1. Suppose that A_n is the $n \times n$ matrix which has 2’s on the diagonal, and 1’s everywhere else:

$$A_2 = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}, \quad A_4 = \begin{bmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{bmatrix}, \ldots$$

and suppose that B_n is the $n \times n$ matrix which is just filled with minus-ones:

$$B_2 = \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}, \quad B_3 = \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}, \quad B_4 = \begin{bmatrix} -1 & -1 & -1 & -1 \\ -1 & -1 & -1 & -1 \\ -1 & -1 & -1 & -1 \\ -1 & -1 & -1 & -1 \end{bmatrix}, \ldots$$

In this problem we will use some of our knowledge of characteristic polynomials to find a formula for $\det(A_n)$.

(a) Explain why $\det(A_n) = \det(I_n - B_n)$, where I_n is the $n \times n$ identity matrix.

(b) If $P_n(t)$ is the characteristic polynomial of B_n, explain why $\det(A_n) = P_n(1)$.

This means that we can compute $\det(A_n)$ by first figuring out the characteristic polynomial of B_n and then plugging in a value. It might seem like more work to compute the characteristic polynomial of B_n, but

(c) Since B_n has rank 1, explain why this means that t^{n-1} has to divide $P_n(t)$. (HINT: How big is the kernel of B_n? What is the relation between the kernel of B_n and the eigenspace E_0 for B_n?).

This means that $P_n(t)$ is of the form $t^{n-1}(t - a)$ for some number a.

(d) Either by looking at the trace of B_n, or by seeing what happens to the vector $\vec{v} = (1, 1, \ldots, 1)$ of all 1’s when you put it through B_n, find the value of a.

(e) What is $\det(A_n)$?

(f) What is the determinant of the $n \times n$ matrix C_n which has 5’s on the diagonal, and 1’s everywhere else?
2. For the following three matrices, find their characteristic polynomials, the algebraic and geometric multiplicities of each eigenvalue, and a basis for each of their eigenspaces.

\[
(a) \begin{bmatrix} 2 & -1 & 2 \\ 1 & 2 & 0 \\ 0 & -1 & 4 \end{bmatrix} \quad (b) \begin{bmatrix} 4 & 6 & -2 \\ -1 & -1 & 1 \\ -1 & -3 & 3 \end{bmatrix} \quad (c) \begin{bmatrix} -6 & 9 & 6 \\ 0 & 3 & 0 \\ -12 & 12 & 11 \end{bmatrix}
\]

To make factoring the characteristic polynomials a bit easier, 2 is a root of each one.

(d) Which of the matrices above is diagonalizable?

(e) For each of the matrices \(A \) from part (d), find an invertible matrix \(N \) so that \(N^{-1}AN \) is a diagonal matrix.

3. Suppose that \(B \) and \(C \) are \(n \times n \) matrices, and that \(N \) is an invertible \(n \times n \) matrix so that \(C = N^{-1}BN \).

(a) Find a formula expressing \(B \) in terms of \(N \) and \(C \) (i.e., “Solve for \(B \)).

(b) Show that \(C^2 = N^{-1}B^2N \). (HINT: just multiply.)

(c) Suppose that \(D \) is a diagonal matrix with real entries. If we want to find a diagonal matrix \(C \) with real entries, such that \(C^2 = D \), what has to be true about the eigenvalues of \(D \)?

(d) Let \(A = \begin{bmatrix} -16 & -10 \\ 50 & 29 \end{bmatrix} \).

Find a real matrix \(B \) with \(B^2 = A \) (i.e., a “square root” of \(A \)).