1. (a) If a is rational and b irrational, then a + b is always irrational.

The most convincing way to make the argument is to use "proof by contradiction" — assume that the sum is rational and show how this leads to a contradiction. The argument goes like this:

Claim: If a is rational and b is irrational, then a + b is always irrational.

Proof: Suppose that a + b were rational, then we could write a + b as the ratio of two integers, say a + b = p/q with both p and q integers. Since a is rational we can also write a as a = m/n with both m and n integers.

But then

$$b = (a + b) - a = \frac{p}{a} - \frac{m}{n} = \frac{pn - qm}{qn}$$

and so b would be a quotient of the integers pn-qm and qn, i.e., b would be rational. Since this contradicts the original assumption that b is irrational, it can't be true that a+b is rational, so the sum must always be irrational.

On the other hand, if a and b are both irrational, there is no way to know what type the sum a+b will be. For instance, if $a=\sqrt{2}$ and $b=\sqrt{2}$, then $a+b=2\sqrt{2}$ which is irrational (by part (b) below). But, if $a=\sqrt{2}$ and $b=3-\sqrt{2}$ then a+b=3 is rational.

I.e., we have an example where a and b are both irrational and the sum is also irrational, and an example where a and b are both irrational and the sum is rational, so certainly knowing that a and b are irrational doesn't let us conclude anything about the type of the sum.

Note that this part of the argument was a little different from the first. In the first we were claiming that something was always true (that a + b would always be irrational if a is rational and b irrational), and the second part we were claiming that in general its impossible to tell what happens if a and b are both irrational.

In the first part we had to give a general argument that would work for all rational a and irrational b, and in the second it was enough just to give two examples.

- (b) This is almost exactly like the first half of part (a), with a small difference. If a is rational and b irrational, then there are two possibilities for the product ab:
 - (i) If $a \neq 0$ then the product ab is irrational, but
 - (ii) If a = 0 then the product ab is zero, which is a rational number.

The argument for part (ii) is easy: if a = 0 then ab = 0 and 0 is a rational number. To show (i) we repeat what we did above, but using multiplication in place of addition and division in place of subtraction.

Claim: If a is rational and $a \neq 0$, and if b is irrational, then the product ab is always irrational.

Proof: If the product ab were rational, we would be able to write the product ab as the ratio of two integers, say ab = p/q with both p and q integers. Since a is rational we can write a as the quotient a = m/n of two integers. Since $a \neq 0$ we can divide by a. But then

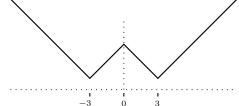
$$b = ab \cdot \frac{1}{a} = \frac{p}{q} \cdot \frac{n}{m} = \frac{pn}{qm}$$

and so b would be rational. This contradicts our original assumption about b, and so the product ab must be irrational.

(c) The answer is yes, it is possible to have such a number, and to justify our answer we just have to give a single example. One possible example is to pick $a = \sqrt[4]{2}$, since then $a^2 = \sqrt{2}$, which we know is irrational, and $a^4 = 2$ which is certainly rational. Many other examples are possible.

2. (a) the function f(|x|) looks like a "W" and can be described as

$$f(|x|) = \begin{cases} x - 2 & \text{if } x \geqslant 3\\ 4 - x & \text{if } 0 \leqslant x \leqslant 3\\ x + 4 & \text{if } -3 \leqslant x \leqslant 0\\ -2 - x & \text{if } x \leqslant -3 \end{cases}$$

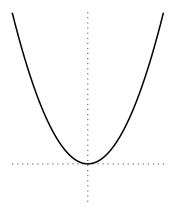


There are several ways to see this. One way is to simply consider the possibilities for x and how they effect the absolute value signs. For instance, if $x \ge 0$ then |x| is just x, and so f(|x|) = f(x) = |x-3|+1. We understand the graph of |x-3|+1 the same way; if $x-3 \ge 0$, i.e., if $x \ge 3$ then |x-3|+1=x-3+1=x-2. On the other hand if $x-3 \le 0$, i.e., if $x \le 3$ then |x-3|+1=-(x-3)+1=4-x.

That shows us that if $x \ge 0$ and $x \ge 3$ (i.e., $x \ge 3$) then f(|x|) = x - 2, while if $x \ge 0$ and $x \le 3$ (i.e., $0 \le x \le 3$) then f(|x|) = 4 - x.

To finish the analysis we need to consider the other possibilities for x. If $x \leq 0$ then |x| = -x and so f(|x|) = f(-x) = |-x-3| + 1. Considering the two possibilities for |-x-3| leads to the rest of the description of f(|x|) above.

(b) The function g(x) + g(-x) is just the function x^2 .

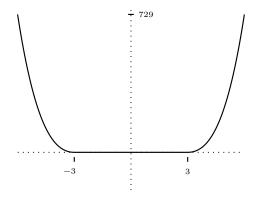


(c) The function $g(x^2-9)$ is equal to $(x^2-9)^2$ when $x^2-9\geqslant 0$ and zero otherwise. The graph looks just like the graph of $(x^2-9)^2$ except that the portion in the interval $-3\leqslant x\leqslant 3$ (which is the interval where $x^2-9\leqslant 0$) has been cut off and replaced with the constant function 0.

So one way of describing the function is

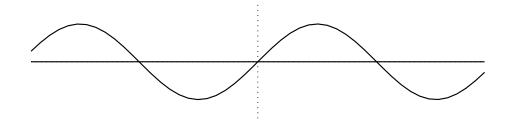
$$g(x^{2}-9) = \begin{cases} (x^{2}-9)^{2} & \text{if } x \geqslant 3 \text{ or } x \leqslant -3\\ 0 & \text{if } -3 \leqslant x \leqslant 3 \end{cases}$$

Since $(x^2-9)^2$ grows fairly rapidly, in order to get a good sketch (one which shows the essential features of the function) it is a bit better to use different scales on the x- and y-axes to be able to show what is happening.



(d) The function h(h(x)) is just the constant function 1; no matter what x is, h(x) is either 0 or 1, both of which are rational numbers, and so h of that will be 1.

(e) If x is rational then $h(x) \cdot \sin(x)$ is just $\sin(x)$. If x is irrational, then $h(x) \cdot \sin(x)$ is zero. So the graph looks like the graph of $\sin(x)$ for the rational points and the graph of 0 for the irrational points.



One way to write the description above using the notation that we've learned is

$$h(x) \cdot \sin(x) = \begin{cases} \sin(x) & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

- 3. Let a, b, c, and d be real numbers, with a < b and c < d.
 - (a) The definitions of [a, b] and [c, d] in set builder form are

$$[a,b] = \left\{ x \in \mathbb{R} \mid a \leqslant x \leqslant b \right\}$$

and

$$[c,d] = \left\{ x \in \mathbb{R} \mid c \leqslant x \leqslant d \right\}.$$

- (b) Let x be an element of [a, b]. Since $x \in [a, b]$, $x \le b$. Since (by assumption), $b \le d$, we have $x \le d$.
- (c) Since $b \in [a, b]$, by the assumption that $[a, b] \subseteq [c, d]$ we then know that $b \in [c, d]$. By the definition of [c, d], this means that $c \le b \le d$. In particular, $b \le d$.

Example 1 (a = 3, b = 5, c = 4, d = 8):

- (e) No, Is [3, 5] is not a subset of [4, 8].
- (f) The statement $c \le a$ (in this case, that $4 \le 3$) is not true. However, the statement that $b \le d$ (in this case, that $5 \le 8$) is true.

The result we proved above is that the containment holds if and only if both inequalites are true. The example above is consistent with this: we do not have containment of the intervals, and at least one of the inequalities is not true.

Example 2 (a = 4, b = 7, c = 2, d = 9):

$$(g) [2,9] : \frac{4}{4} \frac{7}{7}$$

- (h) Yes, $[4,7] \subseteq [2,9]$.
- (i) Both are true. The statement $c \le a$ (in this case, $2 \le 4$) is true, as is $b \le d$ (in this case, $7 \le 9$).

The example above is also consistent with the result we proved : we have containment of the intervals, and both of the inequalities are true.