
Math 120 Answers for Homework 1

1. (a) If a is rational and b irrational, then a+ b is always irrational.
The most convincing way to make the argument is to use “proof by contradiction”
— assume that the sum is rational and show how this leads to a contradiction. The
argument goes like this:
Claim: If a is rational and b is irrational, then a+ b is always irrational.
Proof: Suppose that a + b were rational, then we could write a + b as the ratio of two
integers, say a + b = p/q with both p and q integers. Since a is rational we can also
write a as a = m/n with both m and n integers.
But then

b = (a+ b)− a =
p

q
− m

n
=

pn− qm

qn

and so b would be a quotient of the integers pn− qm and qn, i.e., b would be rational.
Since this contradicts the original assumption that b is irrational, it can’t be true that
a+ b is rational, so the sum must always be irrational. 2

On the other hand, if a and b are both irrational, there is no way to know what type
the sum a + b will be. For instance, if a =

√
2 and b =

√
2, then a + b = 2

√
2 which is

irrational (by part (b) below). But, if a =
√
2 and b = 3−

√
2 then a+ b = 3 is rational.

I.e., we have an example where a and b are both irrational and the sum is also irrational,
and an example where a and b are both irrational and the sum is rational, so certainly
knowing that a and b are irrational doesn’t let us conclude anything about the type of
the sum.
Note that this part of the argument was a little different from the first. In the first we
were claiming that something was always true (that a+ b would always be irrational if
a is rational and b irrational), and the second part we were claiming that in general its
impossible to tell what happens if a and b are both irrational.
In the first part we had to give a general argument that would work for all rational a
and irrational b, and in the second it was enough just to give two examples.
(b) This is almost exactly like the first half of part (a), with a small difference. If a is
rational and b irrational, then there are two possibilities for the product ab:

(i) If a ̸= 0 then the product ab is irrational, but

(ii) If a = 0 then the product ab is zero, which is a rational number.
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The argument for part (ii) is easy: if a = 0 then ab = 0 and 0 is a rational number. To
show (i) we repeat what we did above, but using multiplication in place of addition and
division in place of subtraction.
Claim: If a is rational and a ̸= 0, and if b is irrational, then the product ab is always
irrational.
Proof: If the product ab were rational, we would be able to write the product ab as the
ratio of two integers, say ab = p/q with both p and q integers. Since a is rational we
can write a as the quotient a = m/n of two integers. Since a ̸= 0 we can divide by a.
But then

b = ab · 1
a
=

p

q
· n
m

=
pn

qm

and so b would be rational. This contradicts our original assumption about b, and so
the product ab must be irrational. 2

(c) The answer is yes, it is possible to have such a number, and to justify our answer we
just have to give a single example. One possible example is to pick a = 4

√
2, since then

a2 =
√
2, which we know is irrational, and a4 = 2 which is certainly rational. Many

other examples are possible.

2. (a) the function f(|x|) looks like a “W” and can be described as

f(|x|) =


x− 2 if x ⩾ 3
4− x if 0 ⩽ x ⩽ 3
x+ 4 if −3 ⩽ x ⩽ 0

−2− x if x ⩽ −3
−3 0 3

There are several ways to see this. One way is to simply consider the possibilities for x
and how they effect the absolute value signs. For instance, if x ⩾ 0 then |x| is just x,
and so f(|x|) = f(x) = |x − 3| + 1. We understand the graph of |x − 3| + 1 the same
way; if x− 3 ⩾ 0, i.e., if x ⩾ 3 then |x− 3|+ 1 = x− 3 + 1 = x− 2. On the other hand
if x− 3 ⩽ 0, i.e., if x ⩽ 3 then |x− 3|+ 1 = −(x− 3) + 1 = 4− x.
That shows us that if x ⩾ 0 and x ⩾ 3 (i.e., x ⩾ 3) then f(|x|) = x− 2, while if x ⩾ 0
and x ⩽ 3 (i.e., 0 ⩽ x ⩽ 3) then f(|x|) = 4− x.
To finish the analysis we need to consider the other possibilities for x. If x ⩽ 0 then
|x| = −x and so f(|x|) = f(−x) = | − x − 3| + 1. Considering the two possibilities for
| − x− 3| leads to the rest of the description of f(|x|) above.
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(b) The function g(x) + g(−x) is just the function x2.

(c) The function g
(
x2 − 9

)
is equal to

(
x2 − 9

)2 when x2 − 9 ⩾ 0 and zero otherwise.
The graph looks just like the graph of (x2 − 9)

2 except that the portion in the interval
−3 ⩽ x ⩽ 3 (which is the interval where x2 − 9 ⩽ 0) has been cut off and replaced with
the constant function 0.
So one way of describing the function is

g
(
x2 − 9

)
=

{ (
x2 − 9

)2 if x ⩾ 3 or x ⩽ −3
0 if −3 ⩽ x ⩽ 3

−3 3

729

Since (x2−9)2 grows fairly rapidly, in order to get a
good sketch (one which shows the essential features
of the function) it is a bit better to use different
scales on the x- and y-axes to be able to show what
is happening.

(d) The function h(h(x)) is just the constant function 1; no matter what x is, h(x) is
either 0 or 1, both of which are rational numbers, and so h of that will be 1.
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(e) If x is rational then h(x) · sin(x) is just sin(x). If x is irrational, then h(x) · sin(x) is
zero. So the graph looks like the graph of sin(x) for the rational points and the graph
of 0 for the irrational points.

One way to write the description above using the notation that we’ve learned is

h(x) · sin(x) =
{

sin(x) if x is rational
0 if x is irrational.

3. Let a, b, c, and d be real numbers, with a < b and c < d.

(a) The definitions of [a, b] and [c, d] in set builder form are

[a, b] =
{
x ∈ R a ⩽ x ⩽ b

}
and

[c, d] =
{
x ∈ R c ⩽ x ⩽ d

}
.

(b) Let x be an element of [a, b]. Since x ∈ [a, b], x ⩽ b. Since (by assumption), b ⩽ d,
we have x ⩽ d.

(c) Since b ∈ [a, b], by the assumption that [a, b] ⊆ [c, d] we then know that b ∈ [c, d].
By the definition of [c, d], this means that c ⩽ b ⩽ d. In particular, b ⩽ d.
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Example 1 (a = 3, b = 5, c = 4, d = 8) :

(d)
[3, 5] :

3 5

[4, 8] :
4 8

(e) No, Is [3, 5] is not a subset of [4, 8].

(f) The statement c ⩽ a (in this case, that 4 ⩽ 3) is not true. However, the statement
that b ⩽ d (in this case, that 5 ⩽ 8) is true.

The result we proved above is that the containment holds if and only if both inequalites
are true. The example above is consistent with this : we do not have containment of
the intervals, and at least one of the inequalities is not true.
Example 2 (a = 4, b = 7, c = 2, d = 9) :

(g)
[4, 7] :

4 7

[2, 9] :
2 9

(h) Yes, [4, 7] ⊆ [2, 9].

(i) Both are true. The statement c ⩽ a (in this case, 2 ⩽ 4) is true, as is b ⩽ d (in
this case, 7 ⩽ 9).

The example above is also consistent with the result we proved : we have containment
of the intervals, and both of the inequalities are true.
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