Math 120 Answers for Homework 1

1. (a) If a is rational and b irrational, then a + b is always irrational.

The most convincing way to make the argument is to use “proof by contradiction”
— assume that the sum is rational and show how this leads to a contradiction. The
argument goes like this:

Claim: If a is rational and b is irrational, then a + b is always irrational.

Proof: Suppose that a + b were rational, then we could write a 4+ b as the ratio of two
integers, say a + b = p/q with both p and ¢ integers. Since a is rational we can also
write a as a = m/n with both m and n integers.

But then
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and so b would be a quotient of the integers pn — ¢m and gn, i.e., b would be rational.

Since this contradicts the original assumption that b is irrational, it can’t be true that
a + b is rational, so the sum must always be irrational. a

On the other hand, if @ and b are both irrational, there is no way to know what type
the sum a + b will be. For instance, if a = V2 and b = \/5, then a + b = 24/2 which is
irrational (by part (b) below). But, if a = v/2 and b = 3 — /2 then a+b = 3 is rational.

I.e., we have an example where a and b are both irrational and the sum is also irrational,
and an example where a and b are both irrational and the sum is rational, so certainly
knowing that a and b are irrational doesn’t let us conclude anything about the type of
the sum.

Note that this part of the argument was a little different from the first. In the first we
were claiming that something was always true (that a + b would always be irrational if
a is rational and b irrational), and the second part we were claiming that in general its
impossible to tell what happens if @ and b are both irrational.

In the first part we had to give a general argument that would work for all rational a
and irrational b, and in the second it was enough just to give two examples.

(b) This is almost exactly like the first half of part (a), with a small difference. If a is
rational and b irrational, then there are two possibilities for the product ab:

(7) If a # 0 then the product ab is irrational, but

(79) If @ = 0 then the product ab is zero, which is a rational number.
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The argument for part (77) is easy: if a = 0 then ab = 0 and 0 is a rational number. To
show (7) we repeat what we did above, but using multiplication in place of addition and
division in place of subtraction.

Claim: If a is rational and a # 0, and if b is irrational, then the product ab is always
irrational.

Proof: If the product ab were rational, we would be able to write the product ab as the
ratio of two integers, say ab = p/q with both p and ¢ integers. Since a is rational we
can write a as the quotient a = m/n of two integers. Since a # 0 we can divide by a.
But then

and so b would be rational. This contradicts our original assumption about b, and so
the product ab must be irrational. O

(c) The answer is yes, it is possible to have such a number, and to justify our answer we
just have to give a single example. One possible example is to pick a = v/2, since then
a? = /2, which we know is irrational, and a* = 2 which is certainly rational. Many

other examples are possible.

2. (a) the function f(|z|) looks like a “W” and can be described as

r—2 ifx>3

4—z if0<2<3
Flal) = r4+4 if —3<2<0 :

—2—x ifzr<-3 : ; ;

There are several ways to see this. One way is to simply consider the possibilities for x
and how they effect the absolute value signs. For instance, if x > 0 then |z]| is just z,
and so f(|z|) = f(x) = |x — 3| + 1. We understand the graph of |z — 3| + 1 the same
way; if t —3 >0, i.e.,if x > 3 then |t —3|+1 =2 -3+ 1=z —2. On the other hand
ifz —3<0,ie,ifz<3then|z—-3|+1=—(z—-3)+1=4—=z.

That shows us that if z > 0 and = > 3 (i.e.,, x > 3) then f(|z|) = x — 2, while if z > 0
and x < 3 (i.e., 0 <z < 3) then f(|z]|) =4 — x.

To finish the analysis we need to consider the other possibilities for z. If x < 0 then
|z| = —x and so f(|z|) = f(—z) = | — x — 3| + 1. Considering the two possibilities for
| — 2 — 3| leads to the rest of the description of f(]z|) above.
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(b) The function g(z) + g(—z) is just the function 2.

2

(¢) The function g(x — 9) is equal to (x — 9) when 22 — 9 > 0 and zero otherwise.

The graph looks just like the graph of (2% — 9)2 except that the portion in the interval
—3 < z < 3 (which is the interval where 2% — 9 < 0) has been cut off and replaced with
the constant function 0.

So one way of describing the function is

2 Q) _ (552—9)2 ifx>3o0rez< -3
g(x 9)_{ 0 if -3<2<3

= 729

Since (22 —9)? grows fairly rapidly, in order to get a
good sketch (one which shows the essential features
of the function) it is a bit better to use different
scales on the z- and y-axes to be able to show what
is happening.

(d) The function A(h(x)) is just the constant function 1; no matter what x is, h(z) is
either 0 or 1, both of which are rational numbers, and so h of that will be 1.
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(e) If x is rational then h(z) - sin(zx) is just sin(z). If x is irrational, then hA(x) - sin(z) is
zero. So the graph looks like the graph of sin(z) for the rational points and the graph

of 0 for the irrational points.

One way to write the description above using the notation that we’ve learned is

: [ sin(x) if = is rational
h(z) - sin(z) = { 0 if 2 is irrational.

3. Let a, b, ¢, and d be real numbers, with a < b and ¢ < d.

(a) The definitions of [a,b] and [c, d] in set builder form are

la,b] = {xER

agxgb}

and

le,d] = {JSER

c<r < d} )
(b) Let x be an element of [a,b]. Since z € [a,b], x < b. Since (by assumption), b < d,
we have © < d.

(¢) Since b € [a,b], by the assumption that [a,b] C [¢,d] we then know that b € e, d].
By the definition of [c, d], this means that ¢ < b < d. In particular, b < d.
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Example 1 (a=3,b=5,c=4,d=28):

3, 5]
(d)

4.5 R

(e) No, Is [3,5] is not a subset of [4, §].

(f) The statement ¢ < a (in this case, that 4 < 3) is not true. However, the statement
that b < d (in this case, that 5 < 8) is true.

The result we proved above is that the containment holds if and only if both inequalites
are true. The example above is consistent with this : we do not have containment of
the intervals, and at least one of the inequalities is not true.

Example 2 (a=4,b=7,¢=2,d=9):

[4,7]
(9)

[2,9]

() Yes, [4,7) C [2,9].
(i) Both are true. The statement ¢ < a (in this case, 2 < 4) is true, as is b < d (in

this case, 7 < 9).

The example above is also consistent with the result we proved : we have containment
of the intervals, and both of the inequalities are true.
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