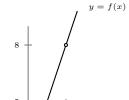
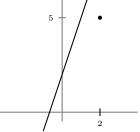
1.

(a) A graph of the function f is shown at right. For every $x \neq 2$, f(x) = 3x + 2, while when x = 2, f(2) = 5.



- (b) Yes, $\lim_{x\to 2} f(x)$ exists, and is equal to 8.
- (c) <u>Initial Investigation</u>: Given $\epsilon > 0$, we want to find $\delta > 0$ so that if $0 < |x 2| < \delta$ then $|f(x) 8| \le \epsilon$.

But, the condition 0 < |x-2| means that x is not allowed to be 2 (as in all cases with limits, we don't allow x to be equal to the limit point). And, if $x \neq 2$, then



f(x) = 3x + 2. So, as long as $0 < |x - 2| < \delta$, we have f(x) = 3x + 2, and so $|f(x) - 8| = |(3x + 2) - 8| = |3x - 6| = 2|x - 3| \le 3\delta$. In order to ensure that this is $\le \epsilon$, we can take $\delta = \frac{\epsilon}{3}$.

Proof. Given $\epsilon > 0$, set $\delta = \frac{\epsilon}{3}$. Then, if $0 < |x - 2| < \delta$, f(x) = 3x + 2, and so $|f(x) - 8| = |(3x + 2) - 8| = 3|x - 2| \le 3\delta = 3 \cdot \frac{\epsilon}{3} = \epsilon$. Therefore $\lim_{x \to 2} f(x) = 8$.

- (d) f is not continuous at x=2. For f to be continuous at x=2 means that $\lim_{x\to 2} f(x) = f(2)$. As we know, this short equation really encodes three conditions:
 - (i) $\lim_{x\to 2} f(x)$ exists.
 - (ii) f is defined at x = 2
 - (iii) The number $\lim_{x\to 2} f(x)$ is equal to the number f(2).

In our case, both (i) and (ii) are satisfied. We have seen above that $\lim_{x\to 2} f(x)$ exists, and f is defined at x=2. However, the value of the limit is 8, and f(2)=5, so condition (iii) is not satisfied.

2. Here is the table.

(a)

x	-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5
g(x)	2	1	0	0	0	1	2

To see that this these are the right values, it is helpful to write down the tables for $\lceil \cdot \rceil$ and $\lfloor \cdot \rfloor$ separately

x	-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5
$\lceil x \rceil$	-1	-1	0	0	1	1	2
[x]	-2	-1	-1	0	0	1	1

Then the value of g(x) is the product of the entries in each column of the table above. E.g., g(-1.5) = (-1)(-2) = 2, g(-1) = (-1)(-1) = 1, g(-0.5) = (0)(-1) = 0, etc.

(b) Yes, $\lim_{x\to 3^+} g(x)$ exists, and has value 12.

To see why, $\lim_{x\to 3^+} g(x)$ is asking what happens to g(x) as x approaches 3 from above (that is, from numbers larger than 3). For all $x \in (3,4)$, i.e., all x larger than 3, but less than 4, $\lceil x \rceil = 4$ and $\lceil x \rceil = 3$, so that $g(x) = 4 \cdot 3 = 12$.

Thus, once x is close enough to 3 from above (specifically, once 3 < x < 4, or 0 < x - 3 < 1) then g(x) = 12, and so $\lim_{x \to 3^+} g(x) = 12$.

(c) No, g(x) is not continuous at x=3. The reason is that $\lim_{x\to 3} g(x)$ does not exist. Arguing as in part (b), we have $\lim_{x\to 3^-} g(x)=6$, since, when $x\in (2,3)$ we have $\lceil x\rceil=3$ and $\lfloor x\rfloor=2$, so that $g(x)=3\cdot 2=6$. As in part (b), this implies that $\lim_{x\to 3^-} g(x)=6$.

We know that $\lim_{x\to 3} g(x)$ exists if and only if $\lim_{x\to 3^+} g(x)$ and $\lim_{x\to 3^-} g(x)$ both exist and have the same value. We have seen above that both of these one-sided limits do exist, but have different values. Therefore $\lim_{x\to 3} g(x)$ does not exist.

For g to be continuous at x = 3 means that $\lim_{x\to 3} g(x) = g(3)$. As before, this is really three conditions

- (1) $\lim_{x\to 3} g(x)$ exists.
- (2) g is defined at x = 3
- (3) The limit $\lim_{x\to 3} g(x)$ is equal to the number g(3).

As we have seen, condition (1) is not satisfied. Condition (2) is satisfied, g is defined at x = 3 and has value g(3) = 9. Given that the limit $\lim_{x\to 3} g(x)$ doesn't exist, it does not make sense to ask if this non-existent limit is equal to g(3) = 9, i.e., to ask about condition (3).

(d) g is continuous at x = 0.

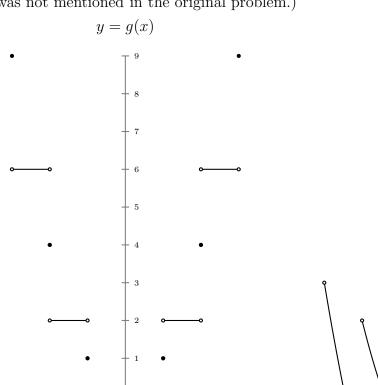
For $x \in (-1,0]$, $\lceil x \rceil = 0$, and so for $x \in (-1,0]$, $g(x) = 0 \cdot \lfloor x \rfloor = 0$. Similarly, for $x \in [0,1)$, $\lfloor x \rfloor = 0$, and so for those x, $g(x) = \lceil x \rceil \cdot 0 = 0$.

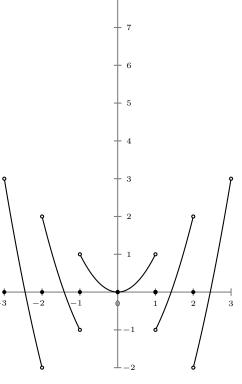
Combining these, for all $x \in (-1, 1)$, g(x) = 0. Therefore,

- (1) $\lim_{x\to 0} g(x)$ exists, and is equal to 0.
- (2) g is defined at x = 0, with value g(0) = 0.
- (3) The limit $\lim_{x\to 0} g(x)$ (namely 0) is equal to the number g(0).

Thus, $\lim_{x\to 0} g(x) = g(0)$, and so g is continuous at x=0.

Below is a graph of g(x) on [-3,3], along with a graph of $x^2 - g(x)$, that is, the graph of $x^2 - \lceil x \rceil \cdot \lfloor x \rfloor$. (This second graph is included just because I find it interesting. It was not mentioned in the original problem.)





 $y = x^2 - q(x)$

3.

(a) The unique value of a so that the limit $\lim_{x\to 2} h(x)$ exists is a=6.

If a=6, then when $x\neq 2$ we have

$$h(x) = \frac{x^2 + 6x - 16}{2x - 4} = \frac{(x - 2)(x + 8)}{2(x - 2)} = \frac{1}{2}(x + 8),$$

and therefore

$$h(x) = \begin{cases} \frac{1}{2}(x+8) & \text{if } x \neq 2\\ 5 & \text{if } x = 2 \end{cases}$$

So that

$$\lim_{x \to 2} h(x) \stackrel{\text{(1)}}{=} \lim_{x \to 2} \frac{1}{2} (x+8) \stackrel{\text{(2)}}{=} \frac{1}{2} (2+8) = 5,$$

with reasons

- (1) The limit is as $x \to 2$, and when $x \neq 2$, $h(x) = \frac{1}{2}(x+8)$,
- (2) $\frac{1}{2}(x+8)$ is a polynomial, and so continuous at x=2 (and in fact, continuous on all of \mathbb{R}), and therefore the limit as $x\to 2$ is the value of the polynomial at x=2.

The above argument shows that there is a limit when a=6, and no further explanation was required in the question. But, how could we have found this value of a? I.e., what ideas would lead us to figure out that a=6 was something to try?

Here is one such way of thinking.

Except for at x = 2, the function h(x) is given by a rational function $h(x) = \frac{x^2 + ax - 16}{2x - 4}$. Let $p(x) = x^2 + ax - 16$ be the numerator and q(x) = 2x - 4 be the denominator.

We first note that as $x \to 2$, q(x) goes to 0. (Since q(x) is a polynomial, and therefore a continuous function, we have $\lim_{x\to 2} q(x) = q(2) = 2 \cdot 2 - 4 = 0$.)

Claim: In order for $\lim_{x\to 2} h(x)$ to exist, we must also have $\lim_{x\to 2} p(x) = 0$, and therefore (since $\lim_{x\to 2} p(x) = p(2)$), p(2) = 0.

Proof. Assume that $\lim_{x\to 2} h(x)$ exists, and let L be the limit. Then, by the theorem on limits and products,

$$\lim_{x \to 2} p(x) = \lim_{x \to 2} \frac{p(x)}{q(x)} \cdot q(x) = \left(\lim_{x \to 2} h(x)\right) \cdot \left(\lim_{x \to 2} q(x)\right) = L \cdot 0 = 0.$$

One can also prove the claim by reasoning the other way: We know that $\lim_{x\to 2} p(x)$ exists. (Since p is a polynomial, and continuous, the limit exists and is equal to

p(2).) Suppose that $\lim_{x\to 2} p(x)$ is not zero. Then, as $x\to 2$, the numerator of h(x) is going to some nonzero number, while the denominator is going to 0. The ratio must be going to $\pm \infty$!

So, again, if $\lim_{x\to 2} h(x)$ exists we must have p(2)=0. Plugging 2 into p we get

$$0 = p(2) = (2)^{2} + a(2) - 16 = 4 + 2a - 16 = 2a - 12 = 2(a - 6),$$

and for this to be true we must have a = 6.

(b) When a = 6, the function h(x) is continuous at x = 2.

As shown in part (a), when a = 6, $\lim_{x\to 2} h(x) = 5$, and since h(2) = 5, this means we have $\lim_{x\to 2} h(x) = h(2)$, which is the condition for h to be continuous at x = 2.

 $4. \lim_{x \to \infty} \frac{\sin(x)}{x^2} = 0.$

Proof. For all x we have $-1 \leqslant \sin(x) \leqslant 1$. When $x \neq 0$, $\frac{1}{x^2} \geqslant 0$, and multiplying the previous inequality by $\frac{1}{x^2}$ gives

$$-\frac{1}{x^2} \leqslant \frac{\sin(x)}{x^2} \leqslant \frac{1}{x^2}.$$

In class we have seen that $\lim_{x\to\infty}\frac{1}{x^2}=0$, and therefore also $\lim_{x\to\infty}-\frac{1}{x^2}=-0=0$. Since these limits are the same, by the squeeze theorem $\lim_{x\to\infty}\frac{\sin(x)}{x^2}$ is equal to this common limit, i.e., $\lim_{x\to\infty}\frac{\sin(x)}{x^2}=0$.

