
Math 120 Answers for Homework 5

1.

(a) A graph of the function f is shown at right. For every x 6= 2,
f(x) = 3x+ 2, while when x = 2, f(2) = 5.
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y = f(x)

(b) Yes, lim
x→2 f(x) exists, and is equal to 8.

(c) Initial Investigation : Given ǫ > 0, we want to find δ > 0
so that if 0 < |x− 2| < δ then |f(x)− 8| 6 ǫ.

But, the condition 0 < |x−2|means that x is not allowed
to be 2 (as in all cases with limits, we don’t allow x

to be equal to the limit point). And, if x 6= 2, then
f(x) = 3x + 2. So, as long as 0 < |x − 2| < δ, we have f(x) = 3x + 2, and so
|f(x)− 8| = |(3x+ 2)− 8| = |3x− 6| = 2|x− 3| 6 3δ. In order to ensure that this
is 6 ǫ, we can take δ = ǫ

3
.

Proof. Given ǫ > 0, set δ = ǫ

3
. Then, if 0 < |x − 2| < δ, f(x) = 3x + 2, and so

|f(x)− 8| = |(3x+ 2)− 8| = 3|x− 2| 6 3δ = 3 · ǫ

3
= ǫ. Therefore lim

x→2
f(x) = 8.

(d) f is not continuous at x = 2. For f to be continuous at x = 2 means that
lim
x→2

f(x) = f(2). As we know, this short equation really encodes three conditions :

(i) lim
x→2

f(x) exists.

(ii) f is defined at x = 2

(iii) The number lim
x→2

f(x) is equal to the number f(2).

In our case, both (i) and (ii) are satisfied. We have seen above that lim
x→2 f(x)

exists, and f is defined at x = 2. However, the value of the limit is 8, and f(2) = 5,
so condition (iii) is not satisfied.
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2. Here is the table.

(a)
x −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

g(x) 2 1 0 0 0 1 2

To see that this these are the right values, it is helpful to write down the tables
for ⌈·⌉ and ⌊·⌋ separately

x −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
⌈x⌉ −1 −1 0 0 1 1 2
⌊x⌋ −2 −1 −1 0 0 1 1

.

Then the value of g(x) is the product of the entries in each column of the ta-
ble above. E.g., g(−1.5) = (−1)(−2) = 2, g(−1) = (−1)(−1) = 1, g(−0.5) =
(0)(−1) = 0, etc.

(b) Yes, lim
x→3+ g(x) exists, and has value 12.

To see why, lim
x→3+ g(x) is asking what happens to g(x) as x approaches 3 from

above (that is, from numbers larger than 3). For all x ∈ (3, 4), i.e., all x larger
than 3, but less than 4, ⌈x⌉ = 4 and ⌊x⌋ = 3, so that g(x) = 4 · 3 = 12.

Thus, once x is close enough to 3 from above (specifically, once 3 < x < 4, or
0 < x− 3 < 1) then g(x) = 12, and so lim

x→3+ g(x) = 12.

(c) No, g(x) is not continuous at x = 3. The reason is that lim
x→3 g(x) does not exist.

Arguing as in part (b), we have lim
x→3− g(x) = 6, since, when x ∈ (2, 3) we have

⌈x⌉ = 3 and ⌊x⌋ = 2, so that g(x) = 3 · 2 = 6. As in part (b), this implies that
lim

x→3− g(x) = 6.

We know that lim
x→3 g(x) exists if and only if lim

x→3+ g(x) and lim
x→3− g(x) both

exist and have the same value. We have seen above that both of these one-sided
limits do exist, but have different values. Therefore lim

x→3 g(x) does not exist.

For g to be continuous at x = 3 means that lim
x→3 g(x) = g(3). As before, this is

really three conditions

(1) lim
x→3 g(x) exists.

(2) g is defined at x = 3

(3) The limit lim
x→3 g(x) is equal to the number g(3).

As we have seen, condition (1) is not satisfied. Condition (2) is satisfied, g is
defined at x = 3 and has value g(3) = 9. Given that the limit lim

x→3 g(x) doesn’t
exist, it does not make sense to ask if this non-existent limit is equal to g(3) = 9,
i.e., to ask about condition (3).
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(d) g is continuous at x = 0.

For x ∈ (−1, 0], ⌈x⌉ = 0, and so for x ∈ (−1, 0], g(x) = 0 · ⌊x⌋ = 0.

Similarly, for x ∈ [0, 1), ⌊x⌋ = 0, and so for those x, g(x) = ⌈x⌉ · 0 = 0.

Combining these, for all x ∈ (−1, 1), g(x) = 0. Therefore,

(1) lim
x→0 g(x) exists, and is equal to 0.

(2) g is defined at x = 0, with value g(0) = 0.

(3) The limit lim
x→0 g(x) (namely 0) is equal to the number g(0).

Thus, lim
x→0 g(x) = g(0), and so g is continuous at x = 0.

Below is a graph of g(x) on [−3, 3], along with a graph of x2 − g(x), that is, the graph
of x2 − ⌈x⌉ · ⌊x⌋. (This second graph is included just because I find it interesting. It
was not mentioned in the original problem.)

y = g(x) y = x2 − g(x)
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3.

(a) The unique value of a so that the limit lim
x→2 h(x) exists is a = 6.

If a = 6, then when x 6= 2 we have

h(x) =
x2 + 6x− 16

2x− 4
=

(x− 2)(x+ 8)

2(x− 2)
= 1

2
(x+ 8),

and therefore

h(x) =

{

1
2
(x+ 8) if x 6= 2
5 if x = 2

So that

lim
x→2

h(x)
()
= lim

x→2

1
2
(x+ 8)

()
= 1

2
(2 + 8) = 5,

with reasons

() The limit is as x → 2, and when x 6= 2, h(x) = 1
2
(x+ 8),

() 1
2
(x+8) is a polynomial, and so continuous at x = 2 (and in fact, continuous

on all of R), and therefore the limit as x → 2 is the value of the polynomial
at x = 2.

The above argument shows that there is a limit when a = 6, and no further
explanation was required in the question. But, how could we have found this
value of a? I.e., what ideas would lead us to figure out that a = 6 was something
to try?

Here is one such way of thinking.

Except for at x = 2, the function h(x) is given by a rational function h(x) =
x
2+ax−16
2x−4

. Let p(x) = x2 + ax − 16 be the numerator and q(x) = 2x − 4 be the
denominator.

We first note that as x → 2, q(x) goes to 0. (Since q(x) is a polynomial, and
therefore a continuous function, we have lim

x→2 q(x) = q(2) = 2 · 2− 4 = 0.)

Claim : In order for lim
x→2 h(x) to exist, we must also have lim

x→2 p(x) = 0, and
therefore (since lim

x→2 p(x) = p(2)), p(2) = 0.

Proof. Assume that lim
x→2 h(x) exists, and let L be the limit. Then, by the

theorem on limits and products,

lim
x→2

p(x) = lim
x→2

p(x)

q(x)
· q(x) =

(

lim
x→2

h(x)
)

·
(

lim
x→2

q(x)
)

= L · 0 = 0. �

One can also prove the claim by reasoning the other way: We know that lim
x→2 p(x)

exists. (Since p is a polynomial, and continuous, the limit exists and is equal to
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p(2).) Suppose that lim
x→2 p(x) is not zero. Then, as x → 2, the numerator of

h(x) is going to some nonzero number, while the denominator is going to 0. The
ratio must be going to ±∞!

So, again, if lim
x→2 h(x) exists we must have p(2) = 0. Plugging 2 into p we get

0 = p(2) = (2)2 + a(2)− 16 = 4 + 2a− 16 = 2a− 12 = 2(a− 6),

and for this to be true we must have a = 6.

(b) When a = 6, the function h(x) is continuous at x = 2.

As shown in part (a), when a = 6, lim
x→2 h(x) = 5, and since h(2) = 5, this

means we have lim
x→2 h(x) = h(2), which is the condition for h to be continuous

at x = 2.

4. lim
x→∞

sin(x)

x2
= 0.

Proof. For all x we have −1 6 sin(x) 6 1. When x 6= 0, 1
x
2 > 0, and multiplying the

previous inequality by 1
x
2 gives

−
1

x2
6

sin(x)

x2
6

1

x2
.

In class we have seen that lim
x→∞

1
x
2 = 0, and therefore also lim

x→∞− 1
x
2 = −0 = 0.

Since these limits are the same, by the squeeze theorem lim
x→∞

sin(x)
x
2 is equal to this

common limit, i.e., lim
x→∞

sin(x)
x
2 = 0.
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