1. The table is:

x	0	1	2	3	4	5	6	7	8	9
$f^{-1}(x)$	9	8	7	6	5	4	3	2	1	0
$(f^{-1})'(x)$	-11	$-\frac{1}{3}$	$-\frac{9}{2}$	$-\frac{3}{5}$	$-\frac{1}{8}$	$-\frac{1}{5}$	$-\pi$	$-\frac{3}{2}$	-2	-1

In order to fill out the table, we just need to use these two rules:

- (i) To figure out $f^{-1}(x)$ we ask "what number should be put into f to get out x?" The answer to the question is the value of $f^{-1}(x)$.
- (ii) To figure out $(f^{-1})'(x)$ we use the formula

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))},$$

valid as long as $f'(f^{-1}(x)) \neq 0$, which doesn't happen in this table.

2.

- (a) Suppose that x_{\circ} is a value of x where $a(x_{\circ}) = 0$. Plugging this into (i) we would get $(0)^2 b(x_{\circ})^2 = 1$, or $b(x_{\circ})^2 = -1$. This is impossible since $b(x_{\circ})^2$ must be greater than or equal to zero (like the square of any real number). Therefore there is no value of x_{\circ} for which $a(x_{\circ}) = 0$.
- (b) Rewriting (i) we get $a(x)^2 = b(x)^2 + 1$. If g(x) is any function then, since a(x) and b(x) have domain all of \mathbb{R} , it makes sense to compose a and b with g. Plugging in g(x) for x we obtain $a(g(x))^2 = b(g(x))^2 + 1$.
- (c) By (iii) b(x) is injective. By the theorem on existence and differentiablity of inverse functions from class, b has an inverse function.
- (d) The key point of the definition of inverse function is that $b(b^{-1}(x)) = x$. Using $b^{-1}(x)$ in place of g(x) in part (b), we get $a(b^{-1}(x))^2 = b(b^{-1}(x))^2 + 1 = x^2 + 1$.
- (e) By the theorem on existence and differentiability of inverse functions from class, if the original function is differentiable, then f^{-1} is differentiable at an inverse function $f^{-1}(x)$ all points x for which $f'(f^{-1}(x)) \neq 0$. Let's apply this to the function b(x) to see that b^{-1} is differentiable on all of \mathbb{R} .

We know that b is differentiable. By (v) b'(x) = a(x). By part (a) a(x) is never zero. Therefore, there is no $x \in \mathbb{R}$ for which $a(b^{-1}(x)) = 0$, and so $b^{-1}(x)$ is differentiable on all of \mathbb{R} .

(f) If an inverse function f^{-1} is differentiable at a point x, its derivative is given by the formula

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

(That is also part of the theorem on the existence and differentiability of inverse functions.)

(REMINDER: the inverse function is differentiable at x when $f'(f^{-1}(x)) \neq 0$.)

Let's apply this to the function b(x). By (v) b'(x) = a(x), and so the formula above reads

$$(b^{-1})'(x) = \frac{1}{a(b^{-1}(x))}.$$

By part (d) we know that $a(b^{-1}(x))^2 = x^2 + 1$, and substituting $b^{-1}(x)$ in place of x in (ii) we know that $a(b^{-1}(x)) \leq 0$. Putting these two facts together we get $a(b^{-1}(x)) = -\sqrt{x^2 + 1}$.

Combining this with the formula above we obtain $(b^{-1})'(x) = \frac{-1}{\sqrt{x^2 + 1}}$, a formula which depends only on x.

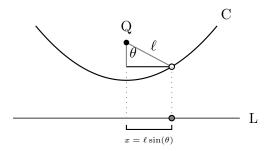
NOTE: The functions a(x) and b(x) really exist. They are

$$a(x) = -\frac{e^{-x} + e^x}{2}$$
, and $b(x) = \frac{e^{-x} - e^x}{2}$.

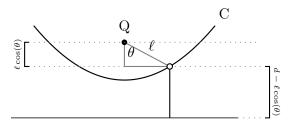
It is easy to check all the properties, except for perhaps (iii) from the description above. To see (iii), that b(x) is injective, note that the derivative b'(x) = a(x) is never zero (by using the argument from part (a) above). This means that b'(x) < 0 for all x, and so b(x) is a (strictly) decreasing function. Then if x_1 and x_2 are any numbers with $x_1 < x_2$, we have $b(x_1) > b(x_2)$. In particular $b(x_1) \neq b(x_2)$, and so b is injective.

3.

(a) By drawing the triangle we see that $x(t) = \ell(t)\sin(\theta(t))$.



(b) The distance from the object to the line L is the distance from Q to the line, minus the distance that the object is below Q, or $d - \ell(t) \cos(t)$. The distance from point Q to the object is $\ell(t)$ (this is the definition of $\ell(t)$!).



The equation expressing the condition that these are equal is therefore

$$\ell(t) = d - \ell(t)\cos(t)$$

i.e.,
$$\ell(t) + \ell(t)\cos(\theta(t)) = d$$
, or $d = \ell(t) (1 + \cos(\theta(t)))$.

(c) Starting with the relationships in (a) and (b) and differentiating with respect to the variable t, we get

$$\frac{dx}{dt} = \sin(\theta(t)) \frac{d\ell}{dt} + \ell(t) \cos(\theta(t)) \frac{d\theta}{dt}$$

$$0 = (1 + \cos(\theta(t))) \frac{d\ell}{dt} - \ell(t)\sin(\theta(t)) \frac{d\theta}{dt}$$

At time t_{\circ} this is

$$5 = \frac{\sqrt{3}}{2} \frac{d\ell}{dt} + 12 \cdot \frac{1}{2} \frac{d\theta}{dt}$$
$$0 = \frac{3}{2} \frac{d\ell}{dt} - 12 \cdot \frac{\sqrt{3}}{2} \frac{d\theta}{dt}$$

which we can write in matrix form as

$$\begin{bmatrix} 5 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} & 6 \\ \frac{3}{2} & -6\sqrt{3} \end{bmatrix} \begin{bmatrix} \frac{d\ell}{dt} \\ \frac{d\theta}{dt} \end{bmatrix}.$$

The inverse of the 2×2 matrix above is

$$\begin{bmatrix} \frac{\sqrt{3}}{2} & 6 \\ \frac{3}{2} & -6\sqrt{3} \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{3} \\ \frac{1}{12} & -\frac{1}{12\sqrt{3}} \end{bmatrix}.$$

Multiplying on the left by this inverse we find that

$$\begin{bmatrix} \frac{d\ell}{dt} \\ \frac{d\theta}{dt} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{3} \\ \frac{1}{12} & -\frac{1}{12\sqrt{3}} \end{bmatrix} \begin{bmatrix} 5 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{5}{\sqrt{3}} \\ \frac{5}{12} \end{bmatrix},$$

and so at time t_{\circ} , $\frac{d\ell}{dt} = \frac{5}{\sqrt{3}}$ m/s and $\frac{d\theta}{dt} = \frac{5}{12}$ rad/s.

