DUE DATE: SEPT. 30, 2025

1. Find (and give an ϵ - δ proof for) the following limits:

- (a) $\lim_{x\to 6} (x^2+4)$.
- (b) $\lim_{x \to -4} (3x^2 + 3x + 4)$.
- (c) $\lim_{x \to -2} \frac{4x 19}{x 7}$.
- (d) $\lim_{x \to 4} \frac{3x 2}{2x 3}$.

See the back page of this assignment for a discussion of how to write up the ϵ - δ proofs in question 1.

2. The purpose of this question is to show a more advanced limit (namely $\lim_{n \to \infty} x^3 = c^3$) directly from the definition (i.e., not using any limit theorems).

Let c be any real number.

- (a) Show that $|x^2 + cx + c^2| \le |x|^2 + |c| \cdot |x| + |c|^2$. (This should be very easy!)
- (b) If |x c| < 1, show that |x| < 1 + |c|.
- (c) If |x-c| < 1, show that $|x^2 + cx + c^2| < (1+|c|)^2 + |c|(1+|c|) + |c|^2$.
- (d) Use the factorization $x^3 c^3 = (x c)(x^2 + cx + c^2)$ to show that if ϵ is some positive number and

$$|x-c| < \min\left(1, \frac{\epsilon}{(1+|c|)^2 + |c|(1+|c|) + |c|^2}\right)$$

then
$$|x^3 - c^3| < \epsilon$$
.

- (e) Give an ϵ - δ proof that $\lim_{x\to c} x^3 = c^3$.
- 3. Use the squeeze theorem to calculate the following limits:

(a)
$$\lim_{x \to 0} (x^4 + x^2) \sin(1/x)$$

(a)
$$\lim_{x\to 0} (x^4 + x^2) \sin(1/x)$$
 (b) $\lim_{x\to 0} (8 + x^2 \cos(x) \sin(1/x))$

Remarks on ϵ – δ proofs.

An ϵ – δ proof is its own literary form and, like a sonnet or a haiku, has a particular structure. The general shape of such a proof is :

Given
$$\epsilon > 0$$
, set $\delta = (some formula involving \epsilon)$. Then, whenever $0 < |x - c| < \delta$,
$$|f(x) - L| = \cdots [some arguments and estimates here] \cdots \leqslant \epsilon.$$
 (I.e., some argument which shows that $|f(x) - L| \leqslant \epsilon$ whenever $0 < |x - c| < \delta$.) Therefore, by the definition of the limit, $\lim_{x \to c} f(x) = L$.

The grading scheme for the ϵ - δ proofs on each part of question 1 is as follows :

Here, \boldsymbol{c} and \boldsymbol{L} should be the correct values for the problem.

Why insist that the argument is written this way?

- (i) ϵ – δ proofs do have a strict form, and anyone reading such an argument expects this form to be followed. If you want to show directly that a limit is as claimed, this is the form you need to use.
- (ii) One of the goals of this class is learning to write a clear mathematical argument (as opposed to writing down a sequence of unexplained and unmotivated calculations). In general it takes extra work to figure out how to organize an argument: Where to start, which notation to introduce, when to introduce it, how to structure the argument.... In contrast, an ϵ - δ proof already comes with its own organizational structure, and so provides an intermediate step between the world of "unexplained calculations" and the world of "clear arguments, organized by the author".
- (iii) Another goal of the class is to understand the ϵ – δ definition of a limit. The purpose of an ϵ – δ proof is to show that the conditions of that definition are satisfied. So, learning to write such a proof may help in understanding what that definition is saying¹.

¹This also suggests it might be a good idea to go back and think about that definition again.