DUE DATE: OCT. 28, 2025

1. Interpret each of the following limits as computing the derivative f'(c) of some function f at some point c, and then use the derivative function to evaluate the limit.

For instance, given the limit $\lim_{h\to 0} \frac{(3+h)^5-3^5}{h}$, we might say :

- "Aha! If we choose the function $f(x) = x^5$, and c = 3, then the limit above is the limit computing f'(c). Since we know that $f'(x) = 5x^4$, we know that $f'(c) = f'(3) = 5 \cdot 3^4 = 405$. Therefore the value of the limit above is 405."
 - $(a) \lim_{h\to 0}\frac{\frac{\sin(\pi/4+h)}{\cos(\pi/4+h)}-1}{h}.$
 - $(b) \lim_{x \to 0} \frac{\sin(x) 0}{x}$
 - (c) $\lim_{w \to \pi/2} \frac{\sin(w)\cos(w)}{w \pi/2}$
 - (d) $\lim_{h\to 0} \frac{(4)^{7+h} 4^7}{h}$.
- 2. Compute the derivative f'(x) for each of the following functions f(x). You do not have to simplify your answer.
 - (a) $f(x) = \sin((x+1)^2(x+2))$.
 - (b) $f(x) = \sin^2((x + \sin(x))^2)$.
 - (c) $f(x) = \sin(x\sin(x)) + \sin(\sin(x^2))$.
 - (d) $f(x) = \sin^2(x)\sin(x^2)\sin^2(x^2)$.
 - (e) $f(x) = (x + \sin^5(x))^6$.
 - (f) $f(x) = \sin((\sin^7(x^7) + 1)^7)$.
 - (g) $f(x) = \sin(x^2 + \sin(x^2 + \sin(x^2)))$.
 - (h) $f(x) = \frac{\sin(x^2)\sin^2(x)}{1 + \sin(x)}$.

¹The use of "Aha!" in your answer is not required.

(i)
$$f(x) = \sin\left(\frac{x^3}{\sin\left(\frac{x^3}{\sin(x)}\right)}\right)$$
.

3. Why do we use radians in calculus?

Let $\sin(\theta)$, $\cos(\theta)$, and $\tan(\theta)$ be the usual trigonometric functions; they take their input in radians and output a number. Let SIN, COS, and TAN be the corresponding functions which take their input in degrees.

So, for example

$$\sin(\pi/2) = 1$$
, $\cos(\pi) = -1$, and $\tan(\pi/4) = 1$ corresponds to

$$SIN(90) = 1$$
, $COS(180) = -1$, and $TAN(45) = 1$,

but $\sin(90) = 0.893996664$, $\cos(\pi) = 0.99849715$, and $\tan(45) = 1.619775191$ (you can check using a calculator).

The relationship between these functions is $SIN(\theta) = \sin(\frac{\pi}{180}\theta)$, $COS(\theta) = \cos(\frac{\pi}{180}\theta)$, and $TAN(\theta) = \tan(\frac{\pi}{180}\theta)$, since multiplying by $\frac{\pi}{180}$ is how we convert from degrees to radians.

(a) Find the derivatives of SIN, COS, and TAN. Write your answer in terms of SIN, COS, and TAN.

SUGGESTION FOR (a): Chain rule!

- (b) Find the derivative $\frac{d}{dx} \sin \left(\sin \left(\cos(x) + 5x \right) + 4x^3 \right)$.
- (c) Find the derivative $\frac{d}{dx}$ SIN (SIN (COS(x) + 5x) + 4x³).

