1. Which of the following sets are path connected? Which are simply connected?
 (a) \mathbb{R}^2 with the circle $x^2 + y^2 = 1$ removed.
 (b) \mathbb{R}^3 with the circle $x^2 + y^2 = 1$, $z = 0$ removed.
 (c) The set $\{(x, y) \mid 1 < x^2 + y^2 < 2\}$ in \mathbb{R}^2.
 (d) \mathbb{R}^3 with the helix $(\cos(t), \sin(t), t)$, $t \in [0, \pi]$ removed.
 (e) The set $\{(x, y) \mid x^2 - y^2 < 0\}$ in \mathbb{R}^2.

2. Here are three curves connecting the point $(1, 0, 0)$ to the point $(-1, 0, 0)$ in \mathbb{R}^3:
 c_1: The half-circle $(\cos(t), \sin(t), 0)$, $t \in [0, \pi]$.
 c_2: The segment $(-t, t^2 - 1, 1 - t^2)$ of a parabola, $t \in [-1, 1]$.
 c_3: The straight line $(-t, 0, 0)$, $t \in [-1, 1]$.
 (a) For $F = (-y, x, z)$, compute $\int_{c_1} F \cdot ds$, $\int_{c_2} F \cdot ds$, and $\int_{c_3} F \cdot ds$.
 (b) For $G = (e^{yz}, xz e^{yz}, xy e^{yz})$, compute $\int_{c_1} G \cdot ds$, $\int_{c_2} G \cdot ds$, and $\int_{c_3} G \cdot ds$.
 (c) Is F a conservative vector field? Is G?

3. Let F be the vector field
 \[F(x, y) = \left(\frac{y}{x^2 + y^2}, \frac{-x}{x^2 + y^2} \right) \]
 and c the unit circle, oriented counterclockwise.
 (a) What is the domain of definition of the vector field F? Is it simply connected?
 (b) Compute $\text{Curl}(F)$ (the \(\mathbb{R}^2\) curl, which is a scalar function, and not a vector field).
 (c) Compute $\int_c F \cdot ds$.
 (d) If G is a vector field, and $G = \nabla g$ for some function g, what would $\int_c G \cdot ds$ have to be? (Hint: Think of c as a curve whose ending point is the same as its starting point).
 (e) Explain how you know that F cannot be the gradient of any function, even though by a local calculation (the curl) it looks like it should be.
4. Let f be the function $f(x, y) = x^2 y$, and

c_1: The half circle $(\sqrt{2} \cos(t), \sqrt{2} \sin(t)), t \in [-3\pi/4, \pi/4]$.
c_2: The half circle $(\sqrt{2} \cos(t), -\sqrt{2} \sin(t)), t \in [3\pi/4, 7\pi/4]$.
c_3: The straight line $(t, t), t \in [-1, 1]$.

All three curves connect the point $(-1, -1)$ to the point $(1, 1)$.

(a) compute $f(1, 1) - f(-1, -1)$
(b) Let $\mathbf{F} = \nabla f$. Compute \mathbf{F}.
(c) Compute $\int_{c_1} \mathbf{F} \cdot ds$, $\int_{c_2} \mathbf{F} \cdot ds$, and $\int_{c_3} \mathbf{F} \cdot ds$.
(d) Explain the connection between (a) and (c).