1. Compute the integral \(\iint_S f \, dS \) for the function \(f(x, y, z) = xy \) and the surface \(S \) which is the graph of \(z = x^2 + y^2 \) inside the rectangle \(0 \leq x \leq 3, \ 0 \leq y \leq 2 \).

2. Fix a radius \(r > 0 \) and two angles \(\varphi_1 \) and \(\varphi_2 \), with \(-\frac{\pi}{2} \leq \varphi_1 \leq \varphi_2 \leq \frac{\pi}{2} \). Find the surface area of the portion of the sphere of radius \(r \) with latitudes between \(\varphi_1 \) and \(\varphi_2 \).

3. Find the integral \(\iint_S \mathbf{F} \cdot dS \) where \(S \) is the helicoid parameterized by \((u \cos(v), \ u \sin(v), \ v) \), \(0 \leq u \leq 1, \ 0 \leq v \leq 4\pi \) with positive orientation upwards, and where \(\mathbf{F} \) is the vector field \(\mathbf{F}(x, y, z) = (y, -x, xz) \).

4. Find the flux integral of \(\mathbf{F}(x, y, z) = (z, x, y^2) \) through the top half of the unit sphere, with outward orientation.

5. Compute the flux integral of

\[
\mathbf{F}(x, y, z) = \left(\frac{x}{(x^2 + y^2 + z^2)^{3/2}}, \frac{y}{(x^2 + y^2 + z^2)^{3/2}}, \frac{z}{(x^2 + y^2 + z^2)^{3/2}} \right)
\]

through the sphere of radius \(r \), oriented outwards.

Compute the divergence \(\text{Div}(\mathbf{F}) \) of \(\mathbf{F} \). Don’t these two answers contradict the divergence theorem? Can you resolve this conflict?