- 1. Find the integral $\iint_S \mathbf{F} \cdot dS$ where S is the helicoid parameterized by $(u\cos(v), u\sin(v), v)$, $0 \le u \le 3$, $0 \le v \le 4\pi$ with positive orientation upwards, and where \mathbf{F} is the vector field $\mathbf{F}(x,y,z) = (xz, -yz, xy)$.
- 2. Find the flux integral of $\mathbf{F}(x,y,z)=(x^2,y^2,z^2)$ through the top half of the unit sphere, with outward orientation.
- 3. The parameterized curve $\mathbf{c}(t) = \left(5\cos(t) + \sin(5t), 5\sin(t) + \cos(5t)\right)$ for $t \in [0, 2\pi]$ is shown at right. Use the vector field $\mathbf{F} = \frac{1}{2}(-y, x)$ and Green's theorem to find the area enclosed by the curve.

 The angle addition formula $\sin(\alpha+\beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$ may prove useful at some point in the calculation.
- 4. Compute the following line integrals by using Green's Theorem to convert each of them into an integral over a two-dimensional region R, and then evaluating that integral over R.
 - (a) Compute $\int_{\mathbf{c}} \mathbf{F} \cdot ds$, where \mathbf{c} is the circle of radius 2, centered at (0,0), oriented counterclockwise, and $\mathbf{F}(x,y) = \left(\cos(\cos(x)) x^2y, e^{\sin(y^2)} + xy^2\right)$.
 - (b) Compute $\int_{\mathbf{c}} \mathbf{F} \cdot ds$, where \mathbf{c} is the boundary of $[1,2] \times [-1,1]$, oriented counterclockwise, and $\mathbf{F}(x,y) = \left(xy^2 + x^3, e^{x^2} + e^{y^2}\right)$.
 - (c) Compute $\int_{\mathbf{c}} \mathbf{F} \cdot ds$, where \mathbf{c} is the boundary of the region between $y = x^2 4x$ and y = 5, oriented counterclockwise, and $\mathbf{F}(x, y) = (y, x^2y)$.

5. Consider the following integral, which does not seem very easy to evaluate.

(*)
$$\frac{1}{\pi} \int_0^{2\pi} e^{100\cos^2(t)} \sin(1 + e^{30\cos^2(t)}) \sin(t) + \cos^2(t) dt$$

In this problem we will evaluate the integral by using Green's theorem. Let **c** be the circle of radius 1 centered at (0,0), and oriented counterclockwise. One possible parameterization of **c** is $\mathbf{c}(t) = (\cos(t), \sin(t))$ with $t \in [0, 2\pi]$.

- (a) Find a vector field **F** so that when evaluating $\int_{\mathbf{c}} \mathbf{F} \cdot ds$ using the parameterization above, the integral that results is (*).
- (b) Use Green's theorem to convert this to an integral over the unit disc, and evaluate that integral.