
Date 
Topic 
Book 
HomeworkHmwk 
Practice ProblemsProbs 
Sept. 
12 
Introduction to the course 
§1 

1— 10


14 
Counting symmetries of polyhedra 
§1 



15 
Axioms 
§2—3 

§2: 3—7; §4: 2— 4


19 
Examples of groups 
§3 

1—10


21 
More symmetries of algebraic structures 
§9 

1—6


22 
Subgroups and generators 
§5 
H1 
1—5, 7, 8


26 
Order of an element, Cyclic groups 
§5 
A1 
10—12


28 
Dihedral groups 
§4 

5—9


29 
The symmetric group 
§6 
H2 
1—5

Oct. 
3 
More Symmetric Group 
§6 
A2 


5 
Homomorphisms 
§16 

1—7


6 
Isomorphisms 
§7 
H3 
1—12


10 
The alternating group 
§6 
A3 
8—12


12 
Cosets 
§11—12 

§11: 1, 2; §12: 3, 8


13 
Lagrange's theorem 
§11 
H4 
1—5


17 
Normal subgroups 
§15 
A4 
1, 2, 4 6


19 
Quotient groups 
§15 

13


20 
The first isomorphism theorem 
§16 
H5 


24 
The correspondence theorem 
§16 
A5 


26 
Proof of the correspondence theorem 
§16 



27 
Conjugation and conjugacy classes 
§14 
H6 
1—5


31 
More conjugation 
§14 
A6 
6, 9, 12

Nov. 
2 
Products 
§10 

1—13


3 
Semidirect products 
§23 
H7 
8—12


7 
Group actions on sets 
§17 
A7 
1, 2, 5, 6, 7


9 
The orbitstablizer theorem 
§17 

3, 4,


10 
Remembrance Day 

H8 


14 
More orbitstabilizer 
§17 
A8 
6, 7, 8


16 
Automorphisms of the platonic solids 
§8 

4, 11


17 
Symmetries of the icosahedron 
§8 
H9 
5, 12


21 
pgroups and the Sylow theorems 
§20 
A9 
1, 2


23 
Proofs of the Sylow theorems 
§20 

3, 9, 10


24 
More Sylow theorems 
§20 
H10 


28 
Groups of elementary order 

A10 


30 
Finitely generated abelian groups 
§21 

1—5

Dec. 
1 
Finite subgroups of SO_{3} 
§19 
H11 
4, 5


5 


A11 


7 





8 


H12 


13 


A12 
