1. Draw pictures of the zero loci of the two equations \(f_1 = xz - x \) and \(f_2 = x^2 + y^2 - z^2 \) in \(\mathbb{A}^3 \). Find their intersection and decompose it into irreducible components. Find the prime ideals in \(k[x, y, z] \) associated to each component.

Solution. The zero locus of \(f_1 = xz - x = x(z - 1) \) consists of the plane \(x = 0 \) and the plane \(z = 1 \). The zero locus of \(f_2 = x^2 + y^2 - z^2 \) is the cone from Homework 2, Question 1(a). Their intersection looks like this:

![Diagram of zero loci](image)

The components are the circle, with equations \(z = 1, x^2 + y^2 = 1 \), the line \(x = 0, y = z \), and the line \(x = 0, y = -z \). The respective ideals are \((z - 1, x^2 + y^2 - 1), (x, y - z), \) and \((x, y + z)\).

2. Draw pictures of the various kinds of irreducible subvarieties in \(\mathbb{A}^3 \), analogous to the one we drew in class for \(\mathbb{A}^2 \). Include a parallel diagram of corresponding prime ideals.

Solution. The picture appears on the next page. In that diagram, the maximal ideals \(m_1, m_2, \) and \(m_3 \) correspond to points \(p_1, p_2, \) and \(p_3 \); the prime ideals \(Q_1 \) and \(Q_2 \) correspond to curves \(C_1 \) and \(C_2 \); prime ideals \(P_1, P_2, \) and \(P_3 \) correspond to surfaces \(S_1, S_2, \) and \(S_3 \); finally the prime ideal \((0)\) corresponds to all of \(\mathbb{A}^3 \). The inclusion among the ideals corresponds to the inclusions among the irreducible subvarieties, but in the opposite direction.

We can read a few more facts off from this diagram. In the picture the curve \(C_2 \) is the intersection of the two surfaces \(S_2 \) and \(S_3 \); the corresponding relation among the prime ideals is \(Q_2 = \sqrt{P_2 + P_3} \). However, \(C_1 \) is not the intersection of \(S_1 \) and \(S_2 \), that intersection has at least one other component. Therefore, the equations in \(P_1 \) and \(P_2 \) are not enough to generate \(Q_2 \) (not even up to radical), more equations are needed to get rid of the other component.
3. Let $X = \mathbb{A}^n$ and for $1 \leq s \leq n$ let V_s be the open subset of X which is the complement of the linear space $x_1 = x_2 = x_3 = \cdots = x_s = 0$. Compute (analogously to the computation for \mathbb{A}^2 and $s = 2$) the ring of functions $\mathcal{O}_X(V_s)$. (You can make your life easier in the case $s > 2$ by appealing to your answer for $s = 2$.)

Solution. First consider the case that $s = 2$. Then V_2 is covered by the two principal open sets $x_1 \neq 0$ and $x_2 \neq 0$ with respective coordinate rings $k[x_1, \ldots, x_n, \frac{1}{x_1}, \frac{1}{x_2}]$ and $k[x_1, \ldots, x_n, \frac{1}{x_2}]$. By construction, an element of $\mathcal{O}_{\mathbb{A}^n}(V_2)$ is a pair $g_1 \in \mathcal{O}_{\mathbb{A}^n}(U_{x_1})$ and $g_2 \in \mathcal{O}_{\mathbb{A}^n}(U_{x_2})$ which agree on the intersection. Write g_1 as a polynomial in x_1 and x_2 whose coefficients are in $k[x_3, x_4, \ldots, x_n]$, i.e. as

$$g_1 = \sum b_{ij}(x_3, \ldots, x_i)x_1^ix_2^j$$

with $b_{ij}(x_2, \ldots, x_n) \in k[x_3, \ldots, x_n], j \geq 0$ and $i \in \mathbb{Z}$. Similarly we can write

$$g_2 = \sum c_{ij}(x_3, \ldots, x_n)x_1^ix_2^j$$

with $c_{ij}(x_2, \ldots, x_n) \in k[x_3, \ldots, x_n], i \geq 0$ and $j \in \mathbb{Z}$.

In order for g_1 and g_2 to agree in $\mathcal{O}_{\mathbb{A}^n}(U_{x_1x_2}) = k[x_1, \ldots, x_n, \frac{1}{x_1}, \frac{1}{x_2}]$, the coefficients of each monomial $x_1^ix_2^j$ must agree. That is, we must have $b_{ij} = c_{ij}$ for all i and j. Since $c_{ij} = 0$ when $i < 0$, we have $b_{ij} = 0$ for negative i as well. Thus $b_{ij} \neq 0$ only for nonnegative i and j. By the equality $c_{ij} = b_{ij}$ the same is true for c_{ij}. Thus both g_1 and g_2 are polynomials in x_1, \ldots, x_n (and the same polynomial). Therefore $\mathcal{O}_{\mathbb{A}^n}(V_2) = k[x_1, \ldots, x_n]$.

To deal with the case $s > 2$, we could repeat this type of computation, or take a shortcut. We have $V_2 \subset V_3 \subset V_4 \subset \cdots \subset V_n$. Hence, when $s > 2$ we have an inclusion $V_2 \subset V_s$, and therefore a restriction map $\mathcal{O}_{\mathbb{A}^n}(V_s) \rightarrow \mathcal{O}_{\mathbb{A}^n}(V_2)$. We also have a restriction map $\mathcal{O}_{\mathbb{A}^n}(\mathbb{A}^n) \rightarrow \mathcal{O}_{\mathbb{A}^n}(V_s)$. By the first part of this problem, the composite map

$$k[x_1, \ldots, x_n] = \mathcal{O}_{\mathbb{A}^n}(\mathbb{A}^n) \rightarrow \mathcal{O}_{\mathbb{A}^n}(V_s) \rightarrow \mathcal{O}_{\mathbb{A}^n}(V_2) = k[x_1, \ldots, x_n]$$

is an isomorphism. Since \mathbb{A}^n is a domain, the restriction map $\mathcal{O}_{\mathbb{A}^n}(V_s) \rightarrow \mathcal{O}_{\mathbb{A}^n}(V_2)$ is an inclusion. By the above composition map, above, the map $\mathcal{O}_{\mathbb{A}^n}(V_s) \rightarrow \mathcal{O}_{\mathbb{A}^n}(V_2)$ is a surjection as well. Thus the map $\mathcal{O}_{\mathbb{A}^n}(V_s) \rightarrow \mathcal{O}_{\mathbb{A}^n}(V_2)$ is an isomorphism, and so $\mathcal{O}_{\mathbb{A}^n}(V_s) = \mathcal{O}_{\mathbb{A}^n}(V_2) = k[x_1, \ldots, x_n]$. \qed

4. Let X be the affine variety described by the equation $xy - z^2 = 0$ in \mathbb{A}^3, and let $U \subset X$ be the complement of $(0,0,0) \in X$. In this problem we will compute $\mathcal{O}_X(U)$ and confirm that it is equal to $R[X]$.

The variety X is covered by the principal open sets U_x and U_y, with coordinate rings $k[x, y, z, 1/x]/(xy - z^2) \cong k[x, 1/x, z]$ and $k[x, y, z, 1/y]/(xy - z^2) \cong k[y, 1/y, z]$ respectively. Any function $g_1 \in R(U_x)$ can be written as a finite sum $g_1 = \sum a_{ij}x^iz^j$ and any function $g_2 \in R(U_y)$ can be written as a finite sum $g_2 = \sum b_{kel}y^kz^l$.

3
(a) What range of indices are valid in the expressions for \(g_1 \) and \(g_2 \) above?

We want to look at pairs \((g_1, g_2)\) which agree on \(U_x \cap U_y \). The expressions for \(g_1 \) and \(g_2 \) above are with respect to different variables. To compare them we need to write them in terms of the same variables.

(b) Use the relation \(y = \frac{z^2}{x} \) (valid on \(U_x \), and hence also on \(U_x \cap U_y \)) to write \(g_2 \) in terms of the variables \(x \) and \(z \).

(c) In order for \(g_1 \) to be equal to \(g_2 \), what must be the relation between the \(a_{ij} \) and the \(b_{k\ell} \)?

(d) Considering the restrictions on the indices from part (a), your formula from (c) will imply additional restrictions on \(i \) and \(j \). What are they?

(e) For each \(i \) and \(j \) satisfying the conditions above, show that there is a monomial \(x^{p}y^{q}z^{r} \) which is equal to \(x^{i}z^{j} \) on \(U_x \).

(f) Explain why this means that the restriction homomorphism \(R[X] \to \mathcal{O}_X(U) \) is surjective.

Solution.

(a) The ranges are \(i \in \mathbb{Z} \) and \(j \geq 0 \) for \(g_1 \) and \(k \in \mathbb{Z} \) and \(\ell \geq 0 \) for \(g_2 \).

(b) \[g_2 = \sum b_{k\ell} y^{k} z^{\ell} = \sum b_{k\ell} \left(\frac{z^2}{x} \right)^{k} z^{\ell} = \sum b_{k\ell} x^{-k} z^{\ell+2k}. \]

(c) In order for \(g_1 \) and \(g_2 \) to agree, the coefficients of each monomial must match up. Thus we must have \(b_{k\ell} = a_{-k,\ell+2k} \) for all \(k \) and \(\ell \), or reversing the formula, that \(a_{ij} = b_{-i,j+2i} \).

(d) Since \(b_{k\ell} = 0 \) when \(\ell < 0 \), we have \(a_{ij} = 0 \) for \(j + 2i < 0 \). Thus nonzero \(a_{ij} \) occur only when \(j + 2i \geq 0 \). Here is a picture of the pairs \((i, j)\) satisfying this condition (as well as \(j \geq 0, i \in \mathbb{Z} \)):
(e) Consider a monomial \(x^i y^j \) with \(i \in \mathbb{Z}, j \geq 0 \), and \(j + 2i \geq 0 \). If \(j \) is even set \(q = \frac{j}{2} \) and \(p = i + \frac{j}{2} \). Then \(q \geq 0 \) since \(j \geq 0 \), and \(p \geq 0 \) since \(2p = 2i + j \geq 0 \). The monomial \(x^p y^q \) therefore belongs to \(\mathcal{O}_X(X) \). Its restriction to \(U_x \) is equal to

\[
x^p \left(\frac{z^2}{x} \right)^q = x^{p-q} z^{2q} = x^{(i+\frac{j}{2})-\frac{j}{2}} z^{2(\frac{j}{2})} = x^i y^j.
\]

On the other hand, if \(j \) is odd, set \(q = \frac{j-1}{2} \), \(p = i + \frac{j-1}{2} \). Since \(j \geq 0 \) and is odd, \(j + 1 \) and therefore \(q \geq 0 \). Since \(2i + j \) is \(\geq 0 \) and odd (\(j \) is odd, and \(2i \) even), \(2i + j \geq 1 \) and therefore \(2i + j \geq 1 \) and so \(2p = 2i + (j-1) \geq 0 \). The monomial \(x^p y^q z \) therefore belongs to \(\mathcal{O}_X(X) \). Its restriction to \(U_x \) is

\[
x^p \left(\frac{z^2}{x} \right)^q z = x^{p-q} z^{2q+1} = x^{(i+\frac{j-1}{2})-\frac{j-1}{2}} z^{2(\frac{j-1}{2})+1} = x^i y^j.
\]

(f) Given any \(g_1 \) and \(g_2 \) which agree on \(U_{xy} \) as above, part (c) shows us that \(g_1 = \sum a_{ij} x^i y^j \) with \(i \in \mathbb{Z}, j \geq 0 \), and \(j + 2i \geq 0 \). By part (e) any such monomial \(x^i y^j \) is the restriction of a monomial of the form \(x^p y^q z^r \), with \(p, q, r \geq 0 \), is the restriction of something in \(R[X] = \mathcal{O}_X(X) \). Thus the restriction map \(R[X] = \mathcal{O}_X(X) \to \mathcal{O}_X(U) \) is surjective.

5. Given a ring \(A \) and an element \(f \in A \) we have been looking at the ring \(A[1/f] \) obtained by adjoining the additional element \(1/f \) to \(A \) (and of course using ring operations to get more elements). More precisely the ring \(A[1/f] \) is the ring \(A[y]/((1-yf)) \). There is a natural ring homomorphism \(A \to A[1/f] \), and we have seen in class that this is not always injective. For instance, if \(h \in A \) is an element so that \(h\cdot f^n = 0 \) for some \(n \geq 1 \), then in \(A[1/f] \) we compute that \(h = (h \cdot f^n) \cdot \frac{1}{f^n} = 0 \cdot \frac{1}{f^n} = 0 \).

The purpose of this question is to prove the converse direction: An element \(h \in A \) is in the kernel of the map \(A \to A[1/f] \) only if there is an \(n \geq 1 \) such that \(h \cdot f^n = 0 \) in \(A \).

Suppose that \(h \) is such an element. This means that the image of \(h \) under the inclusion \(A \hookrightarrow A[y] \) must be in the ideal \((yf-1) \) in \(A[y] \). Therefore there is a polynomial \(g \in A[y] \) such that \(h = g(yf-1) \). Since \(g \in A[y] \) we can write \(g \) as \(g = g_0 + g_1 y + g_2 y^2 + \cdots + g_n y^n \) with each \(g_j \in A \).

(a) Expand \(g \cdot (yf-1) \) as a polynomial in \(y \).

(b) As a polynomial in \(y \), \(h \) has degree 0. Since we have \(h = g \cdot (yf-1) \), the coefficients of powers of \(y \) on both sides of the equality must be the same. Comparing coefficients, write down all the relations you obtain.

(c) Show that \(h \cdot f^{n+1} = 0 \).
Solution.

(a) \[g(yf - 1) = (g_0 + g_1y + g_2y^2 + \cdots + g_ny^n)(yf - 1) \]
\[= -g_0 + (fg_0 - g_1)y + (fg_1 - g_2)y^2 + \cdots + (fg_{n-1} - g_n)y^n + (fg_n)y^{n+1}. \]

(b) Comparing powers of \(y \) we have:

\[
\begin{align*}
 h &= -g_0, \\
 0 &= fg_0 - g_1, \\
 0 &= fg_1 - g_2, \\
 & \vdots \\
 0 &= fg_{n-1} - g_n, \\
 0 &= fg_n.
\end{align*}
\]

(c) From the second through last equations we have \(g_1 = fg_0, \ g_2 = fg_1 = f^2g_0, \ g_3 = fg_2 = f^3g_0, \ldots, \ g_n = fg_{n-1} = f^n g_0, \) and finally \(0 = fg_n = f^{n+1}g_0. \) From the first equation we have \(h = -g_0, \) and therefore \(f^{n+1} \cdot h = -f^n \cdot g_0 = 0. \)