1. Let X and Y be two affine varieties, with rings of functions $R[X]$ and $R[Y]$. In this problem we will use the theorem from the Jan. 23 and 25 classes to prove that X and Y are isomorphic varieties if and only if $R[X]$ and $R[Y]$ are isomorphic rings.

(a) Explain why $(1_X)^* = 1_{R[X]}$.

(b) Suppose that $\varphi: X \to X$ is a morphism of affine varieties and that $\varphi^* = 1_{R[X]}$. Explain why must have $\varphi = 1_X$.

(c) Suppose that X and Y are isomorphic affine varieties. Writing out the definition of “isomorphic varieties” and applying the functor to rings, explain why $R[X]$ and $R[Y]$ are isomorphic rings.

(d) Now suppose that $R[X]$ and $R[Y]$ are isomorphic rings. Write out the definition of “isomorphic rings” and use part (c) of the theorem as well as (b) above to show that X and Y are isomorphic varieties.

2. In this question we will see an example of a morphism of affine varieties which is a bijection on points, but which is not an isomorphism. (In other words, in the category of affine varieties, isomorphism implies more than just bijection.) Let $X = \mathbb{A}^1$ with ring of functions $k[t]$, and let Y be the subset of \mathbb{A}^2 given by the equation $y^2 = x^3$.

(a) Let $\varphi: X \to \mathbb{A}^2$ be the map given by $\varphi(t) = (t^2, t^3)$. Show the image of φ lies in Y, so that φ defines a morphism $\varphi: X \to Y$.

(b) Show that φ is surjective. (i.e., given $(x, y) \in Y$, show that there is a t such that $\varphi(t) = (x, y)$.)

(c) Show that φ is injective.

(d) Draw a sketch of Y (\mathbb{R}^2 points only). One suggestion: from part (b) you know that Y is the image of φ, so you can use the parameterization given by φ to see what Y looks like.

(e) Compute the image of the ring homomorphism $\varphi^*: R[Y] \to R[X]$ (and recall that $R[X] = k[t]$). Is φ^* surjective?

(f) Explain why φ is not an isomorphism of affine varieties.
3. Consider the following four affine varieties, all contained in \(\mathbb{A}^3 \).

\[
X = \left\{ (x_1, x_2, x_3) \mid x_1^2 + x_2^2 - 1 = 0 \right\} \subset \mathbb{A}^3
\]

\[
Y = \left\{ (y_1, y_2, y_3) \mid y_1^2 + y_2^2 - y_3^2 = 0 \right\} \subset \mathbb{A}^3
\]

\[
Z = \left\{ (z_1, z_2, z_3) \mid z_1^2 + z_2^2 + z_3^2 - 625 = 0 \right\} \subset \mathbb{A}^3
\]

\[
W = \left\{ (w_1, w_2, w_3) \mid w_1^2 + w_2^2 - w_3 = 0 \right\} \subset \mathbb{A}^3
\]

Define a map \(\varphi_1 : X \rightarrow \mathbb{A}^3 \) by \(\varphi_1(x_1, x_2, x_3) = (x_1x_3, x_2x_3, x_3) \).

(a) Draw sketches of \(X \), \(Y \), \(Z \), and \(W \).

(b) Is the image of \(\varphi_1 \) contained in \(Y \), \(Z \), or \(W \)? (Justify your answer.)

Define a map \(\varphi_2 : X \rightarrow \mathbb{A}^3 \) by \(\varphi_2(x_1, x_2, x_3) = (-9x_1 + 12x_2, 12x_1 - 16x_2, 20x_1 + 15x_2) \).

(c) Is the image of \(\varphi_2 \) contained in \(Y \), \(Z \), or \(W \)? (Justify your answer.)

Define a map \(\varphi_3 : Y \rightarrow \mathbb{A}^3 \) by \(\varphi_3(y_1, y_2, y_3) = (y_1, y_2, y_3^2) \).

(d) Is the image of \(\varphi_3 \) contained in \(X \), \(Z \), or \(W \)? (Justify your answer.)

One of the maps (b)–(d) has image in \(W \).

(e) What is the pullback of \(3\overline{w}_1 - \overline{w}_2^2 + \overline{w}_3 \in R[W] \) under this map?

Now we will try and go the other way, from a map of rings to a map of varieties. Define a ring homomorphism

\[
R[X] = \frac{k[x_1, x_2, x_3]}{(x_1^2 + x_2^2 - 1)} \leftarrow \frac{k[w_1, w_2, w_3]}{(w_1^2 + w_2^2 - w_3)} = R[W] : \psi
\]

by the rule \(\psi(\overline{w}_1) = 2\overline{x}_1, \ \psi(\overline{w}_2) = 2\overline{x}_2, \ \psi(\overline{w}_3) = 4 \).

(f) Check that this ring homomorphism is well-defined by showing that \(\psi(\overline{w}_1^2 + \overline{w}_2^2 - \overline{w}_3) = 0 \).

(g) What geometric map \(\varphi : X \rightarrow W \) does the ring homomorphism \(\psi \) correspond to? (Write your formula for \(\varphi \) in the form \(\varphi(x_1, x_2, x_3) = (\text{formulas in } x_1, x_2, x_3) \subset \mathbb{A}^3 \) as in (b)–(d) above.)