
Math 413/813 Homework Assignment 11
due date: Apr. 2, 2019

These questions will use the “Riemann-Hurwitz” formula, which will be proved in class
on Thursday, March 28th. As well, in question 3 you will complete the proof of the
‘global’ picture of a map between Riemann surfaces, the statement of which which will
also appear in Thursday’s class.

1. Here is an extremely simple example of a map between Riemann surfaces (aka
“algebraic curves”). Fix an integer n > 1 and define a map ϕ : P1 −→ P

1 by the formula
[X : Y ] −→ [Xn : Y n].

(a) Check that ϕ is well-defined, that is () ϕ doesn’t depend on the choice of rep-
resentative we use for [X : Y ], and () no point of P1 is sent to [0 : 0] by these
instructions.

In order to see that this is a map of Riemann surfaces, let us look in coordinate charts.

(b) Check that ϕ−1(U0) = U0 and that ϕ−1(U1) = U1, i.e, that ϕ maps the standard
coordinate charts to the standard coordinate charts.

(c) In each of U0 and U1 write out (in the coordinates of each chart) what ϕ is doing.
Is ϕ an algebraic map?

(d) Find all the ramification points of ϕ and their ramification degrees.

2. Use the Riemann-Hurwitz formula to find the genus of X , the genus of Y , or the
number of ramification points, as required.

(a) π : X −→ P
1 is a degree 3 cover, with two ramification points, both with ramifi-

cation index kp = 3. Find the genus of X .

(b) π : X −→ P
1 is a degree 3 cover, with three ramification points, all with ramifica-

tion index kp = 3. Find the genus of X .

(c) π : X −→ Y is a map of degree d, X has genus 1, and there are no ramification
points. Find the genus of Y .

(d) X is of genus g, Y is of genus 1, the map π : X −→ Y is of degree d, and all
ramification points p in X are of index 2. Find the number of ramification points
(the answer turns out, in this case, not to depend on the degree d).

Can you think of a map X −→ P
1 satisfying the description in part (a)?
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3. In this question we will complete the proof of the theorem describing the “global”
picture of a non-constant map ϕ : X −→ Y between Riemann surfaces. The key missing
step of the theorem was this : to show that there exists a positive integer d, such that
for any q ∈ Y ,

∑

p∈ϕ−1(q) kp = d. Here the sum is over all p such that ϕ(p) = q, and kp
denotes the ramification index of ϕ at p.

To reduce notation somewhat, let us define the function D : Y −→ N by D(q) =
∑

p∈ϕ−1(q) kp. The goal of this problem is then to show that D is a constant function.

Lemma : For each q ∈ Y there is a small neighbourhood (= open set around) V of q
such that D is constant on V .

First let us see how to prove the result using the lemma.

(a) Use the lemma to show that for each d ∈ N the set

D−1(d) =
{

q ∈ Y D(q) = d
}

is open.

(b) Use (a) to show that for each d ∈ N the set D−1(d) is closed. (Suggestion: this
is the same as showing that the complement is open.)

(c) Use (a)+(b) to show that for each d ∈ N, D−1(d) is either Y or the empty set.

(d) Conclude that there is a unique d ∈ N such that D−1(d) = Y , i.e., conclude that
D is constant on Y .

We now work on proving the lemma.

Fix q ∈ Y , and suppose that ϕ−1(q) = {p1, p2, . . . , pr}. From our local picture we know
that there is an open set V around q, and open sets U1, . . . , Ur around p1,. . . , pr such

that ϕ(Ui) ⊂ V for each i = 1,. . . , r, and that on each Ui the map ϕ looks like zi 7→ z
kpi
i ,

where zi is a local coordinate on Ui, and kpi the ramification index at pi.

Given these Ui and V , for q ∈ V let us split our function D into the sum of two functions.
For q′ ∈ V , by definition D(q′) is the sum over p′ ∈ ϕ−1(q′) of the ramification indices
kp′. We will split the sum into pieces according to whether p′ is in U1 ∪U2 ∪ · · · ∪ Ur or
outside it. Set U = U1 ∪ U2 ∪ · · · ∪ Ur and define :

DU(q
′) =

∑

p′∈ϕ−1(q′)∩U

kp′ and Dc
U

∑

p′∈ϕ−1(q′),p 6∈U

kp′,

so that D(q′) = DU(q
′) +Dc

U(q
′). (The “c” is for ”complement.)

Set d = D(q) = kp1 + kp2 + · · ·+ kpr .
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(e) Show that for q′ sufficiently close to q, DU(q
′) = d.

Claim: For q′ sufficiently close to q, all points of ϕ−1(q′) are in U . (This then shows
that for those points Dc

U(q
′) = 0, and hence using D = DU +Dc

U and (e) that D(q′) = d

for all points q′ sufficiently close to q, thus proving the lemma.)

The negation of this claim is that there is a sequence of points q′1, q
′
2, . . . , converging to

q, and for each q′i a point p′i ∈ ϕ−1(q′i) which is outside of U . Since X is compact, such
a sequence would have a limit point p ∈ X .

(f) Explain why we would have ϕ(p) = q.

(g) Explain why this means that p ∈ {p1, p2, . . . , pr}.

(h) Explain why this means that some p′i (in fact, infinitely many p′i) would have to
be in U .

(i) Explain why this is a contradiction, thus establishing the claim, the lemma, and
finally the theorem from class.
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