Math 413/813 Homework Assignment 11

DUE DATE: APR. 2, 2019

These questions will use the “Riemann-Hurwitz” formula, which will be proved in class
on Thursday, March 28th. As well, in question 3 you will complete the proof of the
‘global’” picture of a map between Riemann surfaces, the statement of which which will
also appear in Thursday’s class.

1. Here is an extremely simple example of a map between Riemann surfaces (aka
“algebraic curves”). Fix an integer n > 1 and define a map ¢: P* — P! by the formula
(X: Y] — [X™: Y.

(a) Check that ¢ is well-defined, that is (1) ¢ doesn’t depend on the choice of rep-
resentative we use for [X: Y], and (2) no point of P! is sent to [0: 0] by these
instructions.

In order to see that this is a map of Riemann surfaces, let us look in coordinate charts.

(b) Check that o=*(Uy) = Uy and that o= }(U;) = Uy, i.e, that ¢ maps the standard
coordinate charts to the standard coordinate charts.

(¢) In each of Uy and Uy write out (in the coordinates of each chart) what ¢ is doing.
Is ¢ an algebraic map?

(d) Find all the ramification points of ¢ and their ramification degrees.

2. Use the Riemann-Hurwitz formula to find the genus of X, the genus of Y, or the
number of ramification points, as required.

(a) m: X — P! is a degree 3 cover, with two ramification points, both with ramifi-
cation index k, = 3. Find the genus of X.

(b) m: X — P! is a degree 3 cover, with three ramification points, all with ramifica-
tion index k, = 3. Find the genus of X.

(¢) m: X — Y is a map of degree d, X has genus 1, and there are no ramification
points. Find the genus of Y.

(d) X is of genus g, Y is of genus 1, the map 7 : X — Y is of degree d, and all
ramification points p in X are of index 2. Find the number of ramification points
(the answer turns out, in this case, not to depend on the degree d).

Can you think of a map X — P! satisfying the description in part (a)?
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3. In this question we will complete the proof of the theorem describing the “global”
picture of a non-constant map ¢: X — Y between Riemann surfaces. The key missing
step of the theorem was this : to show that there exists a positive integer d, such that
for any ¢ € Y, Zpewjl(q) 'k;p = d. Here the sum is over all p such that ¢(p) = ¢, and k,
denotes the ramification index of ¢ at p.

To reduce notation somewhat, let us define the function D:Y — N by D(q) =
Zpewl(q) k,. The goal of this problem is then to show that D is a constant function.

LEMMA : For each ¢ € Y there is a small neighbourhood (= open set around) V' of ¢
such that D is constant on V.

First let us see how to prove the result using the lemma.

(a) Use the lemma to show that for each d € N the set

Dd) = {ge Y| Do) = d}
is open.

(b) Use (a) to show that for each d € N the set D~1(d) is closed. (SUGGESTION: this
is the same as showing that the complement is open.)

(c¢) Use (a)+(b) to show that for each d € N, D7!(d) is either Y or the empty set.

(d) Conclude that there is a unique d € N such that D~'(d) =Y, i.e., conclude that
D is constant on Y.

We now work on proving the lemma.

Fix ¢ € Y, and suppose that ¢~'(q) = {p1,p2,...,p,}. From our local picture we know
that there is an open set V around ¢, and open sets Uy, ..., U, around py,..., p, such

that p(U;) C V for each i = 1,..., r, and that on each U; the map ¢ looks like z; — zf”i,
where z; is a local coordinate on U;, and k,, the ramification index at p;.

Given these U; and V', for ¢ € V let us split our function D into the sum of two functions.
For ¢ € V, by definition D(q’) is the sum over p’ € o~ *(¢') of the ramification indices
k. We will split the sum into pieces according to whether p’ is in Uy UUs U --- U U, or
outside it. Set U = U; UUy U ---U U, and define :

Dy(d) = Z k, and Dy Z Ky,
p'Ep1(¢)NU p'€p=1(q)pgU

so that D(¢') = Dy(¢') + Df;(¢'). (The “c¢” is for ”complement.)
Setd:D(Q) :kp1+kp2+"'+kpr'



(e) Show that for ¢’ sufficiently close to ¢, Dy(q') = d.

Cram: For ¢ sufficiently close to g, all points of ¢~!(¢’) are in U. (This then shows
that for those points Df (¢') = 0, and hence using D = Dy + D§, and (e) that D(¢') =d
for all points ¢’ sufficiently close to ¢, thus proving the lemma.)

The negation of this claim is that there is a sequence of points ¢}, ¢, ..., converging to
q, and for each ¢} a point p} € ¢1(¢}) which is outside of U. Since X is compact, such
a sequence would have a limit point p € X.

(f) Explain why we would have ¢(p) = q.
(9) Explain why this means that p € {p1,p2,...,p:}-

(h) Explain why this means that some p; (in fact, infinitely many p}) would have to
be in U.

(i) Explain why this is a contradiction, thus establishing the claim, the lemma, and
finally the theorem from class.



