
Math 414 Answers for Homework 1

1. Let A be a ring (i.e., a commutative ring) which is a domain and has finitely many
elements. In this problem we will show that A is a field. Let a ∈ A, a 6= 0 be an element.

(a) Consider the map ϕ
a
: A −→ A given by multiplying by a (i.e, ϕ

a
(b) = ab for all

b ∈ A), and show that this map is injective.

(b) Since A is finite, explain why ϕ
a
must also be surjective.

(c) Explain why there must be an element b ∈ A such that ab = 1.

(d) Explain why A is a field.

Solution.

(a) Suppose that b1, b2 ∈ A and that ϕ
a
(b1) = ϕ

a
(b2), i.e, that ab1 = ab2. Subtracting,

this is the same as a(b1 − b2) = 0. Since A is a domain, and a 6= 0, this implies
that b1 − b2 = 0, or that b1 = b2. Therefore ϕ

a
is injective.

(b) Since ϕ is injective, | Im(ϕ
a
)| = |A| (i.e., the size of the image of ϕ

a
is the size of

A). Together with the facts that Im(ϕ
a
) ⊆ A and that |A| is finite, we conclude

that Im(ϕ
a
) = A, i.e., that ϕ

a
is surjective.

(c) Since 1 ∈ A, and ϕ
a
is surjective, there must be some b ∈ A such that ϕ

a
(b) = 1.

By definition ϕ
a
(b) = ab, so we have found a b such that ab = 1.

(d) By parts (a)–(c), for any a ∈ A, a 6= 0, there exists b ∈ A such that ab = 1. Since
A is a (commutative) ring in which every nonzero element has a multiplicative
inverse, A is a field.

2. Let K ⊆ L be fields, and S1 and S2 two subsets of L. If we adjoin S1 to K we get
the field K(S1), and we could then adjoin S2 to get the field (K(S1))(S2). Show that
this field is the same as K(S1 ∪ S2), obtained by adjoining the union of S1 and S2.

Suggestion: Use the defining properties of “field obtained by adjoining elements” to
show that each of the fields is contained in the other.

Solution. The field (K(S1))(S2) is a field which contains K, S1 and S2, and therefore
also contains S1 ∪ S2. By the defining property of K(S1 ∪ S2), this means that K(S1 ∪
S2) ⊆ (K(S1))(S2).

On the other hand, K(S1∪S2) contains K and S1, so by the defining property of K(S1)
we have the containment K(S1) ⊆ K(S1 ∪ S2). Since K(S1 ∪ S2) contains K(S1) and
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S2, by the defining property of (K(S1))(S2) we have the containment (K(S1))(S2) ⊆
K(S1 ∪ S2).

Thus (K(S1))(S2) = K(S1 ∪ S2). �

3. Show that Q(
√
2,
√
3) = Q(

√
2 +

√
3). (Hint: One inclusion should be obvious, and

the other should follow after a little algebra.)

Solution. The field Q(
√
2,
√
3) contains Q and contains

√
2 +

√
3, thus we must have

Q(
√
2 +

√
3) ⊆ Q(

√
2,
√
3) by the defining property of Q(

√
2 +

√
3).

On the other hand, since

(
√
2 +

√
3)3 =

(√
2
)3

+ 3
(√

2
)2√

3 + 3
√
2
(√

3
)2

+
(√

3
)3

= 11
√
2 + 9

√
3

we see that

−9

2
(
√
2 +

√
3) + 1

2
(
√
2 +

√
3)3 = −9

2
(
√
2 +

√
3) + 1

2
(11

√
2 + 9

√
3) =

√
2

and
11

2
(
√
2 +

√
3)− 1

2
(
√
2 +

√
3)3 = 11

2
(
√
2 +

√
3)− 1

2
(11

√
2 + 9

√
3) =

√
3.

Therefore both
√
2 and

√
3 are in Q(

√
2 +

√
3). Since Q(

√
2 +

√
3) also contains Q,

the defining property of Q(
√
2,
√
3) shows us that we have the inclusion Q(

√
2,
√
3) ⊆

Q(
√
2 +

√
3).

Combining both inclusions gives Q(
√
2,
√
3) = Q(

√
2 +

√
3). �

4. In our argument that
{

a+ b 3
√
2 + c 3

√
4 a, b, c ∈ Q

}

is a field we needed to use the

identity

(a+ b
3
√
2 + c

3
√
4) ·

(

(a2 − 2bc) + (2c2 − ab)
3
√
2 + (b2 − ac)

3
√
4
)

= a3 + 2b3 + 4c3 − 6abc

to “get the cube roots out of the denominator”. There is a gap in this argument not
addressed in class : if a, b, and c are such that a + b 3

√
2 + c 3

√
4 6= 0, how do we know

that a3 + 2b3 + 4c3 − 6abc 6= 0? (That’s something we can’t allow in a denominator.)

In this question we will justify that assertion, although we will assume something that
we haven’t proven yet : that 1, 3

√
2 and 3

√
4 are linearly independent over Q. You may

assume this for the question.

Let γ = a+ b 3
√
2+ c 3

√
4 be an element of Q( 3

√
2), with a, b, c ∈ Q, and consider the map

ϕ : Q( 3
√
2) −→ Q( 3

√
2) given by multiplication by γ.

(a) Prove that ϕ is a Q-linear map.
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(b) Write out the matrix for this map in the Q-basis {1, 3
√
2, 3
√
4}.

(c) Compute the determinant of this matrix.

(d) If γ 6= 0, explain why a3 + 2b3 + 4c3 − 6abc 6= 0.

Note: We will soon have a different way of showing that the set
{

a+ b 3
√
2 + c 3

√
4 a, b, c ∈ Q

}

is a field, without needing the identity above, and without needing to prove that
a3 + 2b3 + 4c3 − 6abc 6= 0 whenever γ 6= 0. The computation is still useful however, and
we will come back to the meaning of the determinant later in the course.

Solution.

(a) Let M =
{

a+ b
3
√
2 + c

3
√
4 a, b, c ∈ Q

}

. It is easy to see that M is closed under

multiplication (and this was in fact an implicit assumption in the problem). By
definition the map ϕ is ϕ(α) = γ · α for any α ∈ M . Let us now check that this
map is Q-linear.

For any α1, α2 ∈ M we have ϕ(α1+α2) = γ·(α1+α2) = γ·α1+γ·α2 = ϕ(α1)+ϕ(α2).
Therefore the map ϕ is compatible with addition.

For any α ∈ M and c ∈ Q we have ϕ(cα) = γ · (cα) = c(γ · α) = cϕ(α), so ϕ is
compatible with multiplication by elements of Q (or indeed of any subfield of M).

Therefore ϕ is a Q-linear transformation.

(b) We have :
ϕ(1) = γ · 1 = a+ b 3

√
2 + c 3

√
4;

ϕ( 3
√
2) = γ · 3

√
2 = 2c+ a 3

√
2 + b 3

√
4; and

ϕ( 3
√
4) = γ · 3

√
4 = 2b+ 2c 3

√
2 + a 3

√
4.

Therefore in the Q-basis {1, 3
√
2, 3
√
4} the matrix for ϕ is





a 2c 2b
b a 2c
c b a



 .

(c) This matrix has determinant

∣

∣

∣

∣

∣

∣

a 2c 2b
b a 2c
c b a

∣

∣

∣

∣

∣

∣

= a · a · a + (2c) · (2c) · (2c) + (2b) · b · b− a · (2b) · c− a · b · (2c)− a · b · (2c)

= a3 + 2b3 + 4c3 − 6abc.
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(d) The linear transformation ϕ is a map from the 3-dimensional Q-vector space M

to itself. For any nonzero γ the map ϕ is also an injective linear transformation,
i.e., Ker(ϕ) = {0}. The reason is that if α ∈ M and ϕ(α) = γ · α = 0, then we
must have α = 0 since we are multiplying in the domain R.

Since ϕ is an injective linear transformation from a finite-dimensional vector space
to itself, it is an invertible linear transformation, and hence its determinant, a3 +
2b3 + 4c3 − 6abc is nonzero.

Remark: If γ 6= 0 the argument in (d) shows that ϕ is injective, and hence surjective
since ϕ is a map from the finite dimensional Q-vector space M to itself. In particular,
there must be α ∈ M so that ϕ(α) = 1, or (using the definition of ϕ) so that γ · α = 1.
Thus, following the argument in Question 1, for every nonzero γ ∈ M , there exists
α ∈ M such that γα = 1. We already know that M is a commutative ring, and hence
M is a field. In other words, we now have a third argument that M is a field.

This argument works more generally:

Lemma : If M is a commutative domain which is a finite dimensional vector space over
a field K, such that multiplication is K-linear, then M is a field.

Proof. As above, for any γ 6= 0 in M , consider the map ϕ : M −→ M which is
multiplication by γ. As above, we deduce that ϕ is K-linear, that ϕ is injective [this
uses that M is a domain], and therefore that ϕ is surjective since ϕ is an injective linear
map from a finite-dimensional vector space to itself. Thus there is an α ∈ M such that
γ ·α = ϕ(α) = 1, and so every nonzero element of M has a multiplicative inverse. Thus
M is a field. �
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