1. Let A be a ring (i.e., a commutative ring) which is a domain and has finitely many elements. In this problem we will show that A is a field. Let $a \in A, a \neq 0$ be an element.
(a) Consider the map $\varphi_{a}: A \longrightarrow A$ given by multiplying by a (i.e, $\varphi_{a}(b)=a b$ for all $b \in A$), and show that this map is injective.
(b) Since A is finite, explain why φ_{a} must also be surjective.
(c) Explain why there must be an element $b \in A$ such that $a b=1$.
(d) Explain why A is a field.

Solution.

(a) Suppose that $b_{1}, b_{2} \in A$ and that $\varphi_{a}\left(b_{1}\right)=\varphi_{a}\left(b_{2}\right)$, i.e, that $a b_{1}=a b_{2}$. Subtracting, this is the same as $a\left(b_{1}-b_{2}\right)=0$. Since A is a domain, and $a \neq 0$, this implies that $b_{1}-b_{2}=0$, or that $b_{1}=b_{2}$. Therefore φ_{a} is injective.
(b) Since φ is injective, $\left|\operatorname{Im}\left(\varphi_{a}\right)\right|=|A|$ (i.e., the size of the image of φ_{a} is the size of A). Together with the facts that $\operatorname{Im}\left(\varphi_{a}\right) \subseteq A$ and that $|A|$ is finite, we conclude that $\operatorname{Im}\left(\varphi_{a}\right)=A$, i.e., that φ_{a} is surjective.
(c) Since $1 \in A$, and φ_{a} is surjective, there must be some $b \in A$ such that $\varphi_{a}(b)=1$. By definition $\varphi_{a}(b)=a b$, so we have found a b such that $a b=1$.
(d) By parts (a)-(c), for any $a \in A, a \neq 0$, there exists $b \in A$ such that $a b=1$. Since A is a (commutative) ring in which every nonzero element has a multiplicative inverse, A is a field.
2. Let $K \subseteq L$ be fields, and S_{1} and S_{2} two subsets of L. If we adjoin S_{1} to K we get the field $K\left(S_{1}\right)$, and we could then adjoin S_{2} to get the field $\left(K\left(S_{1}\right)\right)\left(S_{2}\right)$. Show that this field is the same as $K\left(S_{1} \cup S_{2}\right)$, obtained by adjoining the union of S_{1} and S_{2}.

Suggestion: Use the defining properties of "field obtained by adjoining elements" to show that each of the fields is contained in the other.
Solution. The field $\left(K\left(S_{1}\right)\right)\left(S_{2}\right)$ is a field which contains K, S_{1} and S_{2}, and therefore also contains $S_{1} \cup S_{2}$. By the defining property of $K\left(S_{1} \cup S_{2}\right)$, this means that $K\left(S_{1} \cup\right.$ $\left.S_{2}\right) \subseteq\left(K\left(S_{1}\right)\right)\left(S_{2}\right)$.
On the other hand, $K\left(S_{1} \cup S_{2}\right)$ contains K and S_{1}, so by the defining property of $K\left(S_{1}\right)$ we have the containment $K\left(S_{1}\right) \subseteq K\left(S_{1} \cup S_{2}\right)$. Since $K\left(S_{1} \cup S_{2}\right)$ contains $K\left(S_{1}\right)$ and
S_{2}, by the defining property of $\left(K\left(S_{1}\right)\right)\left(S_{2}\right)$ we have the containment $\left(K\left(S_{1}\right)\right)\left(S_{2}\right) \subseteq$ $K\left(S_{1} \cup S_{2}\right)$.
Thus $\left(K\left(S_{1}\right)\right)\left(S_{2}\right)=K\left(S_{1} \cup S_{2}\right)$.
3. Show that $\mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$. (Hint: One inclusion should be obvious, and the other should follow after a little algebra.)
Solution. The field $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ contains \mathbb{Q} and contains $\sqrt{2}+\sqrt{3}$, thus we must have $\mathbb{Q}(\sqrt{2}+\sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ by the defining property of $\mathbb{Q}(\sqrt{2}+\sqrt{3})$.

On the other hand, since

$$
(\sqrt{2}+\sqrt{3})^{3}=(\sqrt{2})^{3}+3(\sqrt{2})^{2} \sqrt{3}+3 \sqrt{2}(\sqrt{3})^{2}+(\sqrt{3})^{3}=11 \sqrt{2}+9 \sqrt{3}
$$

we see that

$$
-\frac{9}{2}(\sqrt{2}+\sqrt{3})+\frac{1}{2}(\sqrt{2}+\sqrt{3})^{3}=-\frac{9}{2}(\sqrt{2}+\sqrt{3})+\frac{1}{2}(11 \sqrt{2}+9 \sqrt{3})=\sqrt{2}
$$

and

$$
\frac{11}{2}(\sqrt{2}+\sqrt{3})-\frac{1}{2}(\sqrt{2}+\sqrt{3})^{3}=\frac{11}{2}(\sqrt{2}+\sqrt{3})-\frac{1}{2}(11 \sqrt{2}+9 \sqrt{3})=\sqrt{3} .
$$

Therefore both $\sqrt{2}$ and $\sqrt{3}$ are in $\mathbb{Q}(\sqrt{2}+\sqrt{3})$. Since $\mathbb{Q}(\sqrt{2}+\sqrt{3})$ also contains \mathbb{Q}, the defining property of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ shows us that we have the inclusion $\mathbb{Q}(\sqrt{2}, \sqrt{3}) \subseteq$ $\mathbb{Q}(\sqrt{2}+\sqrt{3})$.
Combining both inclusions gives $\mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$.
4. In our argument that $\{a+b \sqrt[3]{2}+c \sqrt[3]{4} \mid a, b, c \in \mathbb{Q}\}$ is a field we needed to use the identity

$$
(a+b \sqrt[3]{2}+c \sqrt[3]{4}) \cdot\left(\left(a^{2}-2 b c\right)+\left(2 c^{2}-a b\right) \sqrt[3]{2}+\left(b^{2}-a c\right) \sqrt[3]{4}\right)=a^{3}+2 b^{3}+4 c^{3}-6 a b c
$$

to "get the cube roots out of the denominator". There is a gap in this argument not addressed in class : if a, b, and c are such that $a+b \sqrt[3]{2}+c \sqrt[3]{4} \neq 0$, how do we know that $a^{3}+2 b^{3}+4 c^{3}-6 a b c \neq 0$? (That's something we can't allow in a denominator.)
In this question we will justify that assertion, although we will assume something that we haven't proven yet : that $1, \sqrt[3]{2}$ and $\sqrt[3]{4}$ are linearly independent over \mathbb{Q}. You may assume this for the question.
Let $\gamma=a+b \sqrt[3]{2}+c \sqrt[3]{4}$ be an element of $\mathbb{Q}(\sqrt[3]{2})$, with $a, b, c \in \mathbb{Q}$, and consider the map $\varphi: \mathbb{Q}(\sqrt[3]{2}) \longrightarrow \mathbb{Q}(\sqrt[3]{2})$ given by multiplication by γ.
(a) Prove that φ is a \mathbb{Q}-linear map.
(b) Write out the matrix for this map in the \mathbb{Q}-basis $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$.
(c) Compute the determinant of this matrix.
(d) If $\gamma \neq 0$, explain why $a^{3}+2 b^{3}+4 c^{3}-6 a b c \neq 0$.

Note: We will soon have a different way of showing that the set $\{a+b \sqrt[3]{2}+c \sqrt[3]{4} \mid a, b, c \in \mathbb{Q}\}$ is a field, without needing the identity above, and without needing to prove that $a^{3}+2 b^{3}+4 c^{3}-6 a b c \neq 0$ whenever $\gamma \neq 0$. The computation is still useful however, and we will come back to the meaning of the determinant later in the course.

Solution.

(a) Let $M=\{a+b \sqrt[3]{2}+c \sqrt[3]{4} \mid a, b, c \in \mathbb{Q}\}$. It is easy to see that M is closed under multiplication (and this was in fact an implicit assumption in the problem). By definition the map φ is $\varphi(\alpha)=\gamma \cdot \alpha$ for any $\alpha \in M$. Let us now check that this map is \mathbb{Q}-linear.

For any $\alpha_{1}, \alpha_{2} \in M$ we have $\varphi\left(\alpha_{1}+\alpha_{2}\right)=\gamma \cdot\left(\alpha_{1}+\alpha_{2}\right)=\gamma \cdot \alpha_{1}+\gamma \cdot \alpha_{2}=\varphi\left(\alpha_{1}\right)+\varphi\left(\alpha_{2}\right)$. Therefore the map φ is compatible with addition.

For any $\alpha \in M$ and $c \in \mathbb{Q}$ we have $\varphi(c \alpha)=\gamma \cdot(c \alpha)=c(\gamma \cdot \alpha)=c \varphi(\alpha)$, so φ is compatible with multiplication by elements of \mathbb{Q} (or indeed of any subfield of M).

Therefore φ is a \mathbb{Q}-linear transformation.
(b) We have :

$$
\begin{aligned}
\varphi(1) & =\gamma \cdot 1
\end{aligned}=a+b \sqrt[3]{2}+c \sqrt[3]{4} ;
$$

Therefore in the \mathbb{Q}-basis $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ the matrix for φ is

$$
\left[\begin{array}{ccc}
a & 2 c & 2 b \\
b & a & 2 c \\
c & b & a
\end{array}\right]
$$

(c) This matrix has determinant

$$
\begin{aligned}
\left|\begin{array}{ccc}
a & 2 c & 2 b \\
b & a & 2 c \\
c & b & a
\end{array}\right| & =a \cdot a \cdot a+(2 c) \cdot(2 c) \cdot(2 c)+(2 b) \cdot b \cdot b-a \cdot(2 b) \cdot c-a \cdot b \cdot(2 c)-a \cdot b \cdot(2 c) \\
& =a^{3}+2 b^{3}+4 c^{3}-6 a b c
\end{aligned}
$$

(d) The linear transformation φ is a map from the 3 -dimensional \mathbb{Q}-vector space M to itself. For any nonzero γ the map φ is also an injective linear transformation, i.e., $\operatorname{Ker}(\varphi)=\{0\}$. The reason is that if $\alpha \in M$ and $\varphi(\alpha)=\gamma \cdot \alpha=0$, then we must have $\alpha=0$ since we are multiplying in the domain \mathbb{R}.

Since φ is an injective linear transformation from a finite-dimensional vector space to itself, it is an invertible linear transformation, and hence its determinant, $a^{3}+$ $2 b^{3}+4 c^{3}-6 a b c$ is nonzero.

Remark: If $\gamma \neq 0$ the argument in (d) shows that φ is injective, and hence surjective since φ is a map from the finite dimensional \mathbb{Q}-vector space M to itself. In particular, there must be $\alpha \in M$ so that $\varphi(\alpha)=1$, or (using the definition of φ) so that $\gamma \cdot \alpha=1$. Thus, following the argument in Question 1, for every nonzero $\gamma \in M$, there exists $\alpha \in M$ such that $\gamma \alpha=1$. We already know that M is a commutative ring, and hence M is a field. In other words, we now have a third argument that M is a field.

This argument works more generally:
Lemma : If M is a commutative domain which is a finite dimensional vector space over a field K, such that multiplication is K-linear, then M is a field.

Proof. As above, for any $\gamma \neq 0$ in M, consider the map $\varphi: M \longrightarrow M$ which is multiplication by γ. As above, we deduce that φ is K-linear, that φ is injective [this uses that M is a domain], and therefore that φ is surjective since φ is an injective linear map from a finite-dimensional vector space to itself. Thus there is an $\alpha \in M$ such that $\gamma \cdot \alpha=\varphi(\alpha)=1$, and so every nonzero element of M has a multiplicative inverse. Thus M is a field.

