
Math 414 Answers for Homework 2

1. Let f(x) = x3 + 3x2 + 3x− 1 ∈ Q[x].

(a) Find the remainder of x4 when divided by f(x).

(b) Find the reminder of (x2 + 1)3 when divided by f(x).

(c) Find polynomials u(x), v(x) ∈ Q[x], with deg(u(x)) 6 2 which solve

x2 · u(x) + v(x)f(x) = 1.

Solution.

(a) By polynomial long division we have :

x4 = (x− 3) · (x3 + 3x2 + 3x− 1) + (6x2 + 10x− 3).

Thus, the remainder is 6x2 + 10x− 3.

(b) We again use polynomial long division to compute that

(x2 + 1)3 = (x3 − 3x2 + 9x− 17) · (x3 + 3x2 + 3x− 1) + (24x2 + 60x− 16),

so that the remainder when dividing (x2 + 1)3 by f(x) is 24x2 + 60x− 16.

(c) The extended gcd algorithm gives the solution

x2 · (3x2 + 10x+ 12)− (1 + 3x) · f(x) = 1.

2. Let α be the real number α = 21/3 − 1. To as many decimal places as you can (well,
at least 8, and no more than 20), evaluate the following real numbers:

(a) α4;

(b) (α2 + 1)3;

(c) 1/α2;

(d) 3α2 + 10α + 12;

(e) 24α2 + 60α− 16;

(f) 6α2 + 10α− 3.
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Now,

(g) explain why some of the numbers this question were the same (question 1 may
help).

Solution. We have α = 0.259921049894873164767211 . . ., so that

(a) α4 = 0.0045642120194505189760 . . .

(b) (α2 + 1)3 = 1.2166778459752653712 . . .

(c) 1/α2 = 14.801887355484091083 . . .

(d) 3α2 + 10α + 12 = 14.801887355484091083 . . .

(e) 24α2 + 60α− 16 = 1.2166778459752653712 . . .

(f) 6α2 + 10α− 3 = 0.0045642120194505189760 . . .

(g) The decimal expansions suggest that (a)=(f), (b)=(e), and (c)=(d). Let us see
that this is actually true.

Let us first note that since α + 1 = 3
√
2, and since the minimal polynomial of 3

√
2

over Q is g(x) = x3 − 1, the minimal polynomial of α over Q is

g(x+ 1) = (x+ 1)3 − 2 = x3 + 3x2 + 3x− 1 = f(x).

Second, consider the evalution homomorphism ϕα : Q[x] −→ Q(α) given by h(x) 7→
h(α) for each h(x) ∈ Q[x]. By definition of the minimal polynomial, Ker(ϕα) is
generated by f(x).

Applying ϕα to the equality

x4 = (x− 3) · f(x) + 6x2 + 10x− 3

from Question 1(a) gives

α4 = (α− 3) · f(α) + 6α2+10α− 3 = (α− 3) · 0+ 6α2+10α− 3 = 6α2 +10α− 3.

Applying ϕα to the equality

(x2 + 1)3 = (x3 − 3x2 + 9x− 17) · (x3 + 3x2 + 3x− 1) + (24x2 + 60x− 16),

from Question 1(b) gives

(α2 + 1)3 = (α3 − 3α2 + 9α− 17) · f(α) + (24α2 + 60α− 16)
= (α3 − 3α2 + 9α− 17) · 0 + (24α2 + 60α− 16) = 24α2 + 60α− 16

.
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Finally, applying ϕα to the formula

x2 · (3x2 + 10x+ 12)− (1 + 3x) · f(x) = 1

from Question 1(c) gives

1 = α2 · (3α2 + 10α+ 12)− (1 + 3α) · f(α)
= α2 · (3α2 + 10α+ 12)− (1 + 3α) · 0 = α2 · (3α2 + 10α + 12).

Therefore 1/α2 = 3α2 + 10α+ 12.

Note: In case it wasn’t clear, the purpose of this question was to reinforce the fact that
if K ⊆ L are fields, α ∈ L algebraic over K, and q(x) ∈ K[x] the minimal polynomial of
α over K, then the fieldsK[x]/(q(x)) andK(α) are isomorphic. In particular, arithmetic
in K[x]/(q(x)) is exactly the same as arithmetic in K(α).

3. In this question we will show that f(x) = x4 − 10x2 +1 is the minimal polynomial of√
2+

√
3 over Q. Let q(x) ∈ Q[x] be the (at the moment unknown) minimal polynomial

of
√
2 +

√
3 over Q. It is easy to check that f(

√
2 +

√
3) = 0, which implies that

q(x) | f(x). To show that q(x) = f(x) we may therefore show either that f(x) is
irreducible in Q[x] or that deg(q(x)) = 4.

We will use equality Q(
√
2,
√
3) = Q(

√
2+

√
3), proved in the last homework assignment

to show that deg(q(x)) = 4.

(a) Using the chain of field extensions Q ⊆ Q(
√
2) ⊆ Q(

√
2,
√
3) = Q(

√
2 +

√
3)

explain why deg(q(x)) must be even.

Since deg(q(x)) 6 4, this means that we must have deg(q(x)) = 2 or 4. We now assume
that deg(q(x)) = 2 and show how this leads to a contradiction.

(b) Explain why deg(q(x)) = 2 implies that Q(
√
2) = Q(

√
2+

√
3), and similarly that

Q(
√
3) = Q(

√
2 +

√
3).

(c) Part (b) gives usQ(
√
2) = Q(

√
3), and if so we would be able to write

√
3 = a+b

√
2

with a, b ∈ Q. Square both sides and show how this would lead to a contradiction.
(Do not forget to deal with the special cases a = 0 or b = 0.)

Thus (after finishing (c)) we conclude that f(x) is the minimal polynomial of
√
2 +

√
3

overQ. Let us also try the other method of showing that f(x) is the minimal polynomial :
showing that f(x) is irreducible over Q.

(d) Use one of the irreducibility tests from class to show that f(x) is irreducible over
Q. (There is more than one that will work.)
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Solution.

(a) We have the tower of fields Q ⊂ Q(
√
2) ⊂ Q(

√
2 +

√
3). From our theorem on

simple extensions we know that deg(q(x)) = [Q(
√
2 +

√
3) : Q]. By the tower law

we therefore have

(†) deg(q(x)) = [Q(
√
2 +

√
3) : Q] = [Q(

√
2 +

√
3) : Q(

√
2)] · [Q(

√
2) : Q]

= [Q(
√
2 +

√
3) : Q(

√
2)] · 2,

and so deg(q(x)) is even.

(b) If deg(q(x)) = 2 then equation (†) gives us

2 = deg(q(x)) = 2[Q(
√
2 +

√
3) : Q(

√
2)],

which is the same as [Q(
√
2 +

√
3) : Q(

√
2)] = 1, and this means that Q(

√
2) =

Q(
√
2 +

√
3).

Similarly, we can use the tower of extensions Q ⊂ Q(
√
3) ⊂ Q(

√
2 +

√
3) to get

the equation

(‡) deg(q(x)) = [Q(
√
2 +

√
3) : Q] = [Q(

√
2 +

√
3) : Q(

√
3)] · [Q(

√
3) : Q]

= [Q(
√
2 +

√
3) : Q(

√
2)] · 2.

Using (‡) we similarly deduce that deg(q(x)) = 2 implies

[Q(
√
2 +

√
3) : Q(

√
3)] = 1,

and so Q(
√
3) = Q(

√
2 +

√
3).

(c) Suppose that there are a, b ∈ Q such that
√
3 = a + b

√
2. We cannot have b = 0

since then we would get
√
3 = a ∈ Q, which isn’t true; therefore b 6= 0.

We also cannot have a = 0, since from
√
3 = b

√
2 we get

√
3√
2
= b ∈ Q which

again is not true. (You can use the same kind of argument as the one which shows

that
√
2 isn’t rational, suppose that

√
3√
2
= p/q ∈ Q with gcd(p, q) = 1. Squaring

both sides and cross multiplying we deduce that q must be divisible by 2. Writing
q = 2q′ with q′ ∈ Z, and squaring again we conclude that p must also be divisible
by 2, contradicting gcd(p, q) = 1.)

Therefore we may assume that a 6= 0 and b 6= 0. Squaring both sides of
√
3 =

a + b
√
2 gives

3 = a2 + 2ab
√
2 + 2.

Since ab 6= 0 we may rearrange and divide by ab to get
√
2 = 1−a2

2ab
∈ Q, which is

again a contradiction.
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From parts (b)+(c) we conclude that deg(q(x)) 6= 2, and so deg(q(x)) = 4, implying
that q(x) = x4 − 10x2 + 1.

(d) There are many other ways of seeing that x4−10x2+1 is irreducible over Q. Here
are two :

. Taking on prime values. Set H = max(| − 10/1|, |1/1|) = 10. (That is,
H is the maximum of the coefficients divided by the leading coefficient.) Since
f(14) = 36457 is prime, and 14 > H+2 = 12, we conclude that f(x) is irreducible
over Q by one of the criteria from class.

. Reduction mod p. Reducing f mod 2 we obtain f(x) = x4 + 1 ∈ F2[x].
This polynomial is reducible in F2[x] since x = 1 is a root. Factoring we obtain
f(x) = (x+1)(x3+x2+x+1) ∈ F2[x]. Let g(x) = x3+x2+x+1. We next check
that g(x) is irreducible in F2[x] by checking if g(x) has a root in F2 (this is okay
since deg(g(x)) 6 3). Since g(0) = 1 6= 0, and g(1) = 1 6= 0 we conclude that g(x)
irreducible in F2[x].

This tells us that if f(x) factors in Q[x], the irreducible factors must be of degree
1 and 3.

Next we reduce f(x) mod 3 to get f(x) = x4 + 2x2 + 1 ∈ F3[x]. This polynomial
is reducible in F3[x] :

x4 + 2x+ 1 = (x2 + 1)2.

Let h(x) = x2 + 1 ∈ F3[x]. Since deg(h(x)) 6 3 we can check for irreduciblity
of h(x) in F3[x] by checking if h(x) has roots in F3. We get h(0) = 1 6= 0,
h(1) = 2 6= 0, and h(2) = 2 6= 0, and so h(x) is irreducible in F3[x]. Therefore,
in F3[x], f(x) is the square of an irreducible quadratic. In particular, it is the
product of two irreducible (and equal) quadratics.

This tells us that if f(x) factors over Q the irreducible factors must be of degrees
2 and 2.

These two possibilities for the degrees of the irreducible factors are incompatible,
and therefore f(x) is irreducible over Q.

4. In this question we will explore some aspects of numbers algebraic over a fixed field.

(a) Suppose that K ⊆ M is a field extension, with [M : K] = d (in particular, the
degree of the extension is finite). Show that every α ∈ M is algebraic over K, and
satisfies a polynomial of degree 6 d. (Suggestion: Can 1, α,. . . , αd be linearly
independent over K?)
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(b) Let K ⊆ L be a field extension, and α, β ∈ L. If β is algebraic over K, show that
β is algebraic over K(α).

(c) If α, β ∈ L are both algebraic over K, show that [K(α, β) : K] is finite.

(d) If α, β ∈ L are algebraic over K with β 6= 0, show that α + β, αβ, and α/β are
algebraic over K

(e) Consider the set Q =
{

α ∈ C α is algebraic over Q
}

. Show that Q is a field.

(f) Are there irreducible polynomials in Q[x] of arbitrarily large degree?

(g) Is [Q : Q] finite or infinite?

(h) Does the converse to (a) hold? I.e., if K ⊆ M is a field extension such that every
α ∈ M is algebraic over K, does this imply that [M : K] is finite?

Solution.

(a) Given α ∈ L, since dimK(L) = [L : K] = d, the d + 1 elements 1, α, α2,. . . ,
αd cannot be linearly independent over K. Therefore there is a nontrivial linear
relation among them, i.e., there exists c0, c1, . . . , cd ∈ K, not all zero, such that

c0 · 1 + c1 · α + c2 · α2 + · · ·+ cdα
d = 0.

Let f(x) = c0 + c1x+ c2x
2 + · · ·+ cdx

d ∈ K[x]. Since not all the ci are zero, f(x)
is a nonzero polynomial. The relation above tells us that f(α) = 0, and therefore
α is algebraic over K.

(b) Since β is algebriac over K there is a nonzero polynomial f(x) ∈ K[x] such that
f(β) = 0. Since K ⊆ K(α), f(x) is also a polynomial in K(α)[x] with f(β) = 0.
Therefore β is algebraic over K(α).

(c) Let q(x) be the minimal polynomial of α over K (this exists since α is algebraic
over K) and set d = deg(q(x)). Let p(x) be the minimal polynomial of β over
K(α) (this exists since β is algebraic over K, and hence by part (b), also algebraic
over K(α)), and set e = deg(p(x)). By the tower law for field extensions we have

[K(α, β) : K] = [K(α, β) : K(α)] · [K(α) : K] = e · d,

and thus [K(α, β) : K] is finite.

(d) The numbers α + β, αβ and α/β are all in K(α, β). By part (c) the extension
K ⊆ K(α, β) is finite. By part (a) every element of K(α, β) is therefore algebraic
over K, and in particular, α + β, αβ, and α/β are algebraic over K.
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(e) By definition, every element of Q is algebraic over Q. By part (d), given any α,
β ∈ Q, if β 6= 0 then α + β, αβ, and α/β are also in Q. (And if β = 0 it is clear
that α + β = α and αβ = 0 are in Q.) Thus Q is a commutative ring in which
every nonzero element has a multiplicative inverse, and so Q is a field.

(f) Yes, by Eisenstein’s criterion with the prime p = 2, the degree n polynomial xn−2
is irreducible over Q for every n > 1.

(g) Part (a) showed that if an extension K ⊆ M is finite of degree d, then every
element of M satisfies a polynomial of degree 6 d over K. By part (f), for any
n > 1 the minimal polynomial of α = n

√
2 over Q has degree n. Since n

√
2 ∈ Q, we

conclude that [Q : Q] cannot be finite.

(h) The stated converse to (a) does not hold, with Q ⊆ Q being a counterexample.
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