1. Let $f(x)=x^{3}+3 x^{2}+3 x-1 \in \mathbb{Q}[x]$.
(a) Find the remainder of x^{4} when divided by $f(x)$.
(b) Find the reminder of $\left(x^{2}+1\right)^{3}$ when divided by $f(x)$.
(c) Find polynomials $u(x), v(x) \in \mathbb{Q}[x]$, with $\operatorname{deg}(u(x)) \leqslant 2$ which solve

$$
x^{2} \cdot u(x)+v(x) f(x)=1 .
$$

Solution.

(a) By polynomial long division we have :

$$
x^{4}=(x-3) \cdot\left(x^{3}+3 x^{2}+3 x-1\right)+\left(6 x^{2}+10 x-3\right) .
$$

Thus, the remainder is $6 x^{2}+10 x-3$.
(b) We again use polynomial long division to compute that

$$
\left(x^{2}+1\right)^{3}=\left(x^{3}-3 x^{2}+9 x-17\right) \cdot\left(x^{3}+3 x^{2}+3 x-1\right)+\left(24 x^{2}+60 x-16\right)
$$

so that the remainder when dividing $\left(x^{2}+1\right)^{3}$ by $f(x)$ is $24 x^{2}+60 x-16$.
(c) The extended gcd algorithm gives the solution

$$
x^{2} \cdot\left(3 x^{2}+10 x+12\right)-(1+3 x) \cdot f(x)=1 .
$$

2. Let α be the real number $\alpha=2^{1 / 3}-1$. To as many decimal places as you can (well, at least 8 , and no more than 20), evaluate the following real numbers:
(a) α^{4};
(b) $\left(\alpha^{2}+1\right)^{3}$;
(c) $1 / \alpha^{2}$;
(d) $3 \alpha^{2}+10 \alpha+12$;
(e) $24 \alpha^{2}+60 \alpha-16$;
(f) $6 \alpha^{2}+10 \alpha-3$.

Now,
(g) explain why some of the numbers this question were the same (question 1 may help).

Solution. We have $\alpha=0.259921049894873164767211 \ldots$, so that
(a) $\alpha^{4}=0.0045642120194505189760 \ldots$
(b) $\left(\alpha^{2}+1\right)^{3}=1.2166778459752653712 \ldots$
(c) $1 / \alpha^{2}=14.801887355484091083 \ldots$
(d) $3 \alpha^{2}+10 \alpha+12=14.801887355484091083 \ldots$
(e) $24 \alpha^{2}+60 \alpha-16=1.2166778459752653712 \ldots$
(f) $6 \alpha^{2}+10 \alpha-3=0.0045642120194505189760 \ldots$
(g) The decimal expansions suggest that $(\mathrm{a})=(\mathrm{f}),(\mathrm{b})=(\mathrm{e})$, and $(\mathrm{c})=(\mathrm{d})$. Let us see that this is actually true.

Let us first note that since $\alpha+1=\sqrt[3]{2}$, and since the minimal polynomial of $\sqrt[3]{2}$ over \mathbb{Q} is $g(x)=x^{3}-1$, the minimal polynomial of α over \mathbb{Q} is

$$
g(x+1)=(x+1)^{3}-2=x^{3}+3 x^{2}+3 x-1=f(x) .
$$

Second, consider the evalution homomorphism $\varphi_{\alpha}: \mathbb{Q}[x] \longrightarrow \mathbb{Q}(\alpha)$ given by $h(x) \mapsto$ $h(\alpha)$ for each $h(x) \in \mathbb{Q}[x]$. By definition of the minimal polynomial, $\operatorname{Ker}\left(\varphi_{\alpha}\right)$ is generated by $f(x)$.

Applying φ_{α} to the equality

$$
x^{4}=(x-3) \cdot f(x)+6 x^{2}+10 x-3
$$

from Question 1(a) gives

$$
\alpha^{4}=(\alpha-3) \cdot f(\alpha)+6 \alpha^{2}+10 \alpha-3=(\alpha-3) \cdot 0+6 \alpha^{2}+10 \alpha-3=6 \alpha^{2}+10 \alpha-3 .
$$

Applying φ_{α} to the equality

$$
\left(x^{2}+1\right)^{3}=\left(x^{3}-3 x^{2}+9 x-17\right) \cdot\left(x^{3}+3 x^{2}+3 x-1\right)+\left(24 x^{2}+60 x-16\right)
$$

from Question 1(b) gives

$$
\begin{aligned}
\left(\alpha^{2}+1\right)^{3} & =\left(\alpha^{3}-3 \alpha^{2}+9 \alpha-17\right) \cdot f(\alpha)+\left(24 \alpha^{2}+60 \alpha-16\right) \\
& =\left(\alpha^{3}-3 \alpha^{2}+9 \alpha-17\right) \cdot 0+\left(24 \alpha^{2}+60 \alpha-16\right)=24 \alpha^{2}+60 \alpha-16
\end{aligned}
$$

Finally, applying φ_{α} to the formula

$$
x^{2} \cdot\left(3 x^{2}+10 x+12\right)-(1+3 x) \cdot f(x)=1
$$

from Question 1(c) gives

$$
\begin{aligned}
1 & =\alpha^{2} \cdot\left(3 \alpha^{2}+10 \alpha+12\right)-(1+3 \alpha) \cdot f(\alpha) \\
& =\alpha^{2} \cdot\left(3 \alpha^{2}+10 \alpha+12\right)-(1+3 \alpha) \cdot 0=\alpha^{2} \cdot\left(3 \alpha^{2}+10 \alpha+12\right)
\end{aligned}
$$

Therefore $1 / \alpha^{2}=3 \alpha^{2}+10 \alpha+12$.
Note: In case it wasn't clear, the purpose of this question was to reinforce the fact that if $K \subseteq L$ are fields, $\alpha \in L$ algebraic over K, and $q(x) \in K[x]$ the minimal polynomial of α over K, then the fields $K[x] /(q(x))$ and $K(\alpha)$ are isomorphic. In particular, arithmetic in $K[x] /(q(x))$ is exactly the same as arithmetic in $K(\alpha)$.
3. In this question we will show that $f(x)=x^{4}-10 x^{2}+1$ is the minimal polynomial of $\sqrt{2}+\sqrt{3}$ over \mathbb{Q}. Let $q(x) \in \mathbb{Q}[x]$ be the (at the moment unknown) minimal polynomial of $\sqrt{2}+\sqrt{3}$ over \mathbb{Q}. It is easy to check that $f(\sqrt{2}+\sqrt{3})=0$, which implies that $q(x) \mid f(x)$. To show that $q(x)=f(x)$ we may therefore show either that $f(x)$ is irreducible in $\mathbb{Q}[x]$ or that $\operatorname{deg}(q(x))=4$.
We will use equality $\mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$, proved in the last homework assignment to show that $\operatorname{deg}(q(x))=4$.
(a) Using the chain of field extensions $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$ explain why $\operatorname{deg}(q(x))$ must be even.

Since $\operatorname{deg}(q(x)) \leqslant 4$, this means that we must have $\operatorname{deg}(q(x))=2$ or 4 . We now assume that $\operatorname{deg}(q(x))=2$ and show how this leads to a contradiction.
(b) Explain why $\operatorname{deg}(q(x))=2$ implies that $\mathbb{Q}(\sqrt{2})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$, and similarly that $\mathbb{Q}(\sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$.
(c) Part (b) gives us $\mathbb{Q}(\sqrt{2})=\mathbb{Q}(\sqrt{3})$, and if so we would be able to write $\sqrt{3}=a+b \sqrt{2}$ with $a, b \in \mathbb{Q}$. Square both sides and show how this would lead to a contradiction. (Do not forget to deal with the special cases $a=0$ or $b=0$.)

Thus (after finishing (c)) we conclude that $f(x)$ is the minimal polynomial of $\sqrt{2}+\sqrt{3}$ over \mathbb{Q}. Let us also try the other method of showing that $f(x)$ is the minimal polynomial : showing that $f(x)$ is irreducible over \mathbb{Q}.
(d) Use one of the irreducibility tests from class to show that $f(x)$ is irreducible over \mathbb{Q}. (There is more than one that will work.)

Solution.

(a) We have the tower of fields $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt{2}+\sqrt{3})$. From our theorem on simple extensions we know that $\operatorname{deg}(q(x))=[\mathbb{Q}(\sqrt{2}+\sqrt{3}): \mathbb{Q}]$. By the tower law we therefore have

$$
\begin{align*}
\operatorname{deg}(q(x)) & =[\mathbb{Q}(\sqrt{2}+\sqrt{3}): \mathbb{Q}]=[\mathbb{Q}(\sqrt{2}+\sqrt{3}): \mathbb{Q}(\sqrt{2})] \cdot[\mathbb{Q}(\sqrt{2}): \mathbb{Q}] \\
& =[\mathbb{Q}(\sqrt{2}+\sqrt{3}): \mathbb{Q}(\sqrt{2})] \cdot 2,
\end{align*}
$$

and so $\operatorname{deg}(q(x))$ is even.
(b) If $\operatorname{deg}(q(x))=2$ then equation (\dagger) gives us

$$
2=\operatorname{deg}(q(x))=2[\mathbb{Q}(\sqrt{2}+\sqrt{3}): \mathbb{Q}(\sqrt{2})]
$$

which is the same as $[\mathbb{Q}(\sqrt{2}+\sqrt{3}): \mathbb{Q}(\sqrt{2})]=1$, and this means that $\mathbb{Q}(\sqrt{2})=$ $\mathbb{Q}(\sqrt{2}+\sqrt{3})$.

Similarly, we can use the tower of extensions $\mathbb{Q} \subset \mathbb{Q}(\sqrt{3}) \subset \mathbb{Q}(\sqrt{2}+\sqrt{3})$ to get the equation

$$
\begin{align*}
\operatorname{deg}(q(x)) & =[\mathbb{Q}(\sqrt{2}+\sqrt{3}): \mathbb{Q}]=[\mathbb{Q}(\sqrt{2}+\sqrt{3}): \mathbb{Q}(\sqrt{3})] \cdot[\mathbb{Q}(\sqrt{3}): \mathbb{Q}] \\
& =[\mathbb{Q}(\sqrt{2}+\sqrt{3}): \mathbb{Q}(\sqrt{2})] \cdot 2 .
\end{align*}
$$

Using (\ddagger) we similarly deduce that $\operatorname{deg}(q(x))=2$ implies

$$
[\mathbb{Q}(\sqrt{2}+\sqrt{3}): \mathbb{Q}(\sqrt{3})]=1,
$$

and so $\mathbb{Q}(\sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$.
(c) Suppose that there are $a, b \in \mathbb{Q}$ such that $\sqrt{3}=a+b \sqrt{2}$. We cannot have $b=0$ since then we would get $\sqrt{3}=a \in \mathbb{Q}$, which isn't true; therefore $b \neq 0$.

We also cannot have $a=0$, since from $\sqrt{3}=b \sqrt{2}$ we get $\frac{\sqrt{3}}{\sqrt{2}}=b \in \mathbb{Q}$ which again is not true. (You can use the same kind of argument as the one which shows that $\sqrt{2}$ isn't rational, suppose that $\frac{\sqrt{3}}{\sqrt{2}}=p / q \in \mathbb{Q}$ with $\operatorname{gcd}(p, q)=1$. Squaring both sides and cross multiplying we deduce that q must be divisible by 2 . Writing $q=2 q^{\prime}$ with $q^{\prime} \in \mathbb{Z}$, and squaring again we conclude that p must also be divisible by 2 , contradicting $\operatorname{gcd}(p, q)=1$.)

Therefore we may assume that $a \neq 0$ and $b \neq 0$. Squaring both sides of $\sqrt{3}=$ $a+b \sqrt{2}$ gives

$$
3=a^{2}+2 a b \sqrt{2}+2 .
$$

Since $a b \neq 0$ we may rearrange and divide by $a b$ to get $\sqrt{2}=\frac{1-a^{2}}{2 a b} \in \mathbb{Q}$, which is again a contradiction.

From parts (b) $+(\mathrm{c})$ we conclude that $\operatorname{deg}(q(x)) \neq 2$, and so $\operatorname{deg}(q(x))=4$, implying that $q(x)=x^{4}-10 x^{2}+1$.
(d) There are many other ways of seeing that $x^{4}-10 x^{2}+1$ is irreducible over \mathbb{Q}. Here are two :

1. Taking on prime values. Set $H=\max (|-10 / 1|,|1 / 1|)=10$. (That is, H is the maximum of the coefficients divided by the leading coefficient.) Since $f(14)=36457$ is prime, and $14 \geqslant H+2=12$, we conclude that $f(x)$ is irreducible over \mathbb{Q} by one of the criteria from class.
2. Reduction mod p. Reducing $f \bmod 2$ we obtain $\bar{f}(x)=x^{4}+1 \in \mathbb{F}_{2}[x]$. This polynomial is reducible in $\mathbb{F}_{2}[x]$ since $x=1$ is a root. Factoring we obtain $\bar{f}(x)=(x+1)\left(x^{3}+x^{2}+x+1\right) \in \mathbb{F}_{2}[x]$. Let $g(x)=x^{3}+x^{2}+x+1$. We next check that $g(x)$ is irreducible in $\mathbb{F}_{2}[x]$ by checking if $g(x)$ has a root in \mathbb{F}_{2} (this is okay since $\operatorname{deg}(g(x)) \leqslant 3)$. Since $g(0)=1 \neq 0$, and $g(1)=1 \neq 0$ we conclude that $g(x)$ irreducible in $\mathbb{F}_{2}[x]$.

This tells us that if $f(x)$ factors in $\mathbb{Q}[x]$, the irreducible factors must be of degree 1 and 3.

Next we reduce $f(x) \bmod 3$ to get $\bar{f}(x)=x^{4}+2 x^{2}+1 \in \mathbb{F}_{3}[x]$. This polynomial is reducible in $\mathbb{F}_{3}[x]$:

$$
x^{4}+2 x+1=\left(x^{2}+1\right)^{2} .
$$

Let $h(x)=x^{2}+1 \in \mathbb{F}_{3}[x]$. Since $\operatorname{deg}(h(x)) \leqslant 3$ we can check for irreduciblity of $h(x)$ in $\mathbb{F}_{3}[x]$ by checking if $h(x)$ has roots in \mathbb{F}_{3}. We get $h(0)=1 \neq 0$, $h(1)=2 \neq 0$, and $h(2)=2 \neq 0$, and so $h(x)$ is irreducible in $\mathbb{F}_{3}[x]$. Therefore, in $\mathbb{F}_{3}[x], \bar{f}(x)$ is the square of an irreducible quadratic. In particular, it is the product of two irreducible (and equal) quadratics.

This tells us that if $f(x)$ factors over \mathbb{Q} the irreducible factors must be of degrees 2 and 2.

These two possibilities for the degrees of the irreducible factors are incompatible, and therefore $f(x)$ is irreducible over \mathbb{Q}.
4. In this question we will explore some aspects of numbers algebraic over a fixed field.
(a) Suppose that $K \subseteq M$ is a field extension, with $[M: K]=d$ (in particular, the degree of the extension is finite). Show that every $\alpha \in M$ is algebraic over K, and satisfies a polynomial of degree $\leqslant d$. (Suggestion: Can $1, \alpha, \ldots, \alpha^{d}$ be linearly independent over K ?)
(b) Let $K \subseteq L$ be a field extension, and $\alpha, \beta \in L$. If β is algebraic over K, show that β is algebraic over $K(\alpha)$.
(c) If $\alpha, \beta \in L$ are both algebraic over K, show that $[K(\alpha, \beta): K]$ is finite.
(d) If $\alpha, \beta \in L$ are algebraic over K with $\beta \neq 0$, show that $\alpha+\beta, \alpha \beta$, and α / β are algebraic over K
(e) Consider the set $\overline{\mathbb{Q}}=\{\alpha \in \mathbb{C} \mid \alpha$ is algebraic over $\mathbb{Q}\}$. Show that $\overline{\mathbb{Q}}$ is a field.
(f) Are there irreducible polynomials in $\mathbb{Q}[x]$ of arbitrarily large degree?
(g) Is $[\overline{\mathbb{Q}}: \mathbb{Q}]$ finite or infinite?
(h) Does the converse to (a) hold? I.e., if $K \subseteq M$ is a field extension such that every $\alpha \in M$ is algebraic over K, does this imply that $[M: K]$ is finite?

Solution.

(a) Given $\alpha \in L$, since $\operatorname{dim}_{K}(L)=[L: K]=d$, the $d+1$ elements $1, \alpha, \alpha^{2}, \ldots$, α^{d} cannot be linearly independent over K. Therefore there is a nontrivial linear relation among them, i.e., there exists $c_{0}, c_{1}, \ldots, c_{d} \in K$, not all zero, such that

$$
c_{0} \cdot 1+c_{1} \cdot \alpha+c_{2} \cdot \alpha^{2}+\cdots+c_{d} \alpha^{d}=0 .
$$

Let $f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{d} x^{d} \in K[x]$. Since not all the c_{i} are zero, $f(x)$ is a nonzero polynomial. The relation above tells us that $f(\alpha)=0$, and therefore α is algebraic over K.
(b) Since β is algebriac over K there is a nonzero polynomial $f(x) \in K[x]$ such that $f(\beta)=0$. Since $K \subseteq K(\alpha), f(x)$ is also a polynomial in $K(\alpha)[x]$ with $f(\beta)=0$. Therefore β is algebraic over $K(\alpha)$.
(c) Let $q(x)$ be the minimal polynomial of α over K (this exists since α is algebraic over K) and set $d=\operatorname{deg}(q(x))$. Let $p(x)$ be the minimal polynomial of β over $K(\alpha)$ (this exists since β is algebraic over K, and hence by part (b), also algebraic over $K(\alpha)$), and set $e=\operatorname{deg}(p(x))$. By the tower law for field extensions we have

$$
[K(\alpha, \beta): K]=[K(\alpha, \beta): K(\alpha)] \cdot[K(\alpha): K]=e \cdot d
$$

and thus $[K(\alpha, \beta): K]$ is finite.
(d) The numbers $\alpha+\beta, \alpha \beta$ and α / β are all in $K(\alpha, \beta)$. By part (c) the extension $K \subseteq K(\alpha, \beta)$ is finite. By part (a) every element of $K(\alpha, \beta)$ is therefore algebraic over K, and in particular, $\alpha+\beta, \alpha \beta$, and α / β are algebraic over K.
(e) By definition, every element of $\overline{\mathbb{Q}}$ is algebraic over \mathbb{Q}. By part (d), given any α, $\beta \in \overline{\mathbb{Q}}$, if $\beta \neq 0$ then $\alpha+\beta, \alpha \beta$, and α / β are also in $\overline{\mathbb{Q}}$. (And if $\beta=0$ it is clear that $\alpha+\beta=\alpha$ and $\alpha \beta=0$ are in $\overline{\mathbb{Q}}$.) Thus $\overline{\mathbb{Q}}$ is a commutative ring in which every nonzero element has a multiplicative inverse, and so $\overline{\mathbb{Q}}$ is a field.
(f) Yes, by Eisenstein's criterion with the prime $p=2$, the degree n polynomial $x^{n}-2$ is irreducible over \mathbb{Q} for every $n \geqslant 1$.
(g) Part (a) showed that if an extension $K \subseteq M$ is finite of degree d, then every element of M satisfies a polynomial of degree $\leqslant d$ over K. By part (f), for any $n \geqslant 1$ the minimal polynomial of $\alpha=\sqrt[n]{2}$ over \mathbb{Q} has degree n. Since $\sqrt[n]{2} \in \overline{\mathbb{Q}}$, we conclude that $[\overline{\mathbb{Q}}: \mathbb{Q}]$ cannot be finite.
(h) The stated converse to (a) does not hold, with $\mathbb{Q} \subseteq \overline{\mathbb{Q}}$ being a counterexample.

