
Math 414 Answers for Homework 3

1. Let p be a prime number. In this problem we will find the minimal polynomial of
ξ = e2πi/p, a primitive p-th root of unity. (Primitive means that it is one of the generators
of the group {z ∈ Z zp = 1} of all p-th roots of unity. In general the primitive n-th
roots of unity are, by definition, the generators of {z ∈ C zn = 1}, and are all of the
form e2πik/n with 1 6 k 6 n− 1 and gcd(k, n) = 1.)

(a) Show that ξ is a root of the polynomial f(x) = xp − 1 ∈ Q[x].

Since ξ 6= 1, this means that ξ is also a root of the polynomial

(†) q(x) =
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ x+ 1.

If we show that q(x) is irreducible over Q we will therefore show that q(x) is the minimal
polynomial of ξ.

(b) Make the substitution x = y+1 in (†) and use Eisenstein’s criterion to show that
q(x) is irreducible over Q.

Solution.

(a) We have f(ξ) = ξp − 1 = (e2πi/p)p − 1 = e2πi − 1 = 1− 1 = 0.

(b) Using (†) we compute that

q(y + 1) = (y+1)p−1
(y+1)−1

=
(yp+(p

1
)yp−1+(p

2
)yp−2+···++( p

p−2
)y2+( p

p−1
)y+1)−1

y

= yp−1 +
(

p
1

)

yp−2 +
(

p
2

)

yp−3 + · · ·+
(

p
p−2

)

y +
(

p
1

)

.

This polynomial satisfies Eisenstein’s criterion with respect to the prime p : The
leading term is not divisible by p, all the other terms are divisible by p, and the
constant term, while divisible by p, is not divisible by p2. Therefore the polynomial
q(y + 1), and hence q(x), is irreducible over Q.

2. Q(
√
2,
√
3) and the tower law.

(a) Show that x2−3 is irreducible over Q(
√
2). (Suggestion : Consider the extension

Q ⊆ Q(
√
2,
√
3) = Q(

√
2 +

√
3). Question 3 of Homework 2 tells you the degree

of this extension.)
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(b) What is a basis for Q(
√
2,
√
3) over Q(

√
2)?

(c) If K ⊆ M ⊆ L are fields, the proof of the theorem on degrees in a tower shows
us how to a convert a basis of L over M and a basis for M over K into a basis
for L over K. What basis do you get if you apply that argument with K = Q,
M = Q(

√
2) and L = Q(

√
2,
√
3)?

(d) Show that 1,
√
2,

√
3, and

√
6 are linearly independent over Q.

Solution.

(a) By H1 Q3 and H2 Q3 we know that [Q(
√
2,
√
3) : Q] = 4. We also know that

[Q(
√
2) : Q] = 2. The tower law then tells us that [Q(

√
2,
√
3) : Q(

√
2)] = 2. Thus

the minimal polynomial of
√
3 over Q(

√
2) has degree 2. Since x2 − 3 ∈ Q(

√
2)[x]

has
√
3 as a root, the minimal polynomial must divide x2 − 3, but since both of

these are monic of degree 2, the minimal polynomial must be x2 − 3.

(b) By our structure theorem for simple extensions, once we know that the minimal
polynomial of

√
3 over Q(

√
2) has degree 2, we know that 1,

√
2 is a basis for

Q(
√
2,
√
3) over Q(

√
2).

(c) Suppose we have three fields K ⊆ M ⊆ L. The proof of the tower law tells us
that if α1,. . . , αr is a basis of M over K, and if β1,. . . , βs is a basis of L over M ,
then the set of rs possible products {αiβj}r,si=1,j=1 is a basis of L over K.

Therefore, since 1,
√
2 is a basis for Q(

√
2) over Q, and 1,

√
3 a basis of Q(

√
2,
√
3)

over Q(
√
2), the proof tells us that

1 · 1 = 1, 1 ·
√
2 =

√
2,
√
3 · 1 =

√
3, and

√
3 ·

√
2 =

√
6

is a basis of Q(
√
2,
√
3) over Q.

(d) A subset {v1, . . . , vt} of a vector space V over a field k is a basis if and only if the
set is linearly independent and it spans. In particular, the condition of being a
basis includes the condition of being linearly independent. By part (c) we know
1,

√
2,

√
3,

√
6 is a basis for Q(

√
2,
√
3) over Q. Thus 1,

√
2,

√
3,

√
6 are linearly

independent over Q.
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3. Let L be the field L = Q(ω) where ω = e2πi/3.

(a) Find the minimal polynomial of ω over Q.

(b) Your answer from (a) will imply that

Q(ω) = {a+ bω | a, b ∈ Q} .

Show how to multiply in this basis. That is, given α = a+ bω, β = c+dω ∈ Q(ω),
with a, b, c, d ∈ Q, show how to write the product αβ in the basis 1, ω.

(c) Show that the map a+ bω 7→ (a− b)− bω is an automorphism of Q(ω).

(d) Compute the group Aut(Q(ω)/Q).

Solution.

(a) The element ω = e2πi/3 is a primitive 3-rd root of unity, and p = 3 is a prime.
Therefore by Q1 of this homework assignment the minimal polynomial for ω is
q(x) = x2 + x+ 1.

(b) From part (a) we have q(ω) = ω2+ω+1 = 0, which we can rewrite as ω2 = −ω−1.
Therefore

(a+ bω) · (c+ dω) = ac+ (ad+ bc)ω + bdω2 = ac + (ad+ bc)ω + bd(−ω − 1)

= (ac− bd) + (ad+ bc− bd)ω.

(c) Let σ : Q(ω) −→ Q(ω) be the map σ(a+ bω) = (a− b)− bω (where a, b ∈ Q). The
formula describes a Q-linear map from Q(ω) to itself, whose matrix in the basis
1, ω is

[

1 −1
0 −1

]

.

The determinant of this matrix is (1)(−1) − (0)(−1) = −1 6= 0, so the matrix is
invertible, and hence σ is a bijective map. Thus, σ is a bijective map which fixes
Q and is compatible with addition. It remains to check if σ is compatible with
multiplication.

Let α = a+ bω and β = c+ dω be elements of Q(ω) with a, b, c, d ∈ Q. Using the
formula in part (b) we have

σ(α · β) = σ
(

(ac− bd) + (ad+ bc− bd)ω
)

=
(

(ac− bd)− (ad+ bc− bd)
)

− (ad+ bc− bd)ω.

= (ac− ad− bc)− (ad+ bc− bd)ω.
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On the other hand, we have σ(α) = (a − b) − bω, and σ(β) = (c − d) − dω, and
again using the formula from part (b) to multiply we get

σ(α) · σ(β) =
(

(a− b)− bω
)

·
(

(c− d)− dω
)

=
(

(a− b)(c− d)− (−b)(−d)
)

+
(

(a− b)(−d) + (−b)(c− d)− (−b)(−d)
)

ω

= (ac− bc− ad+ bd− bd) + (−ad + bd− bc+ bd − bd)ω

= (ac− bc− ad)− (ad+ bc− bd)ω.

Comparing the formulas we have

σ(α · β) = (ac− ad− bc)− (ad+ bc− bd)ω = σ(α) · σ(β),
and therefore σ is compatible with multiplication. Therefore σ is an automorphism
of Q(ω).

(d) Our bound on the order of the automorphism group tells us that

|Aut(Q(ω)/Q)| 6 [Q(ω) : Q] = 2,

and therefore that Aut(Q(ω)/Q) is either the trivial group or group of order 2.

In part (c) we saw that σ is an automorphism of Q(ω) which fixes Q. It is a
nontrivial automorphism since σ(ω) = −1−ω 6= ω. Thus Aut(Q(ω)/Q) = {Id, σ}.

4. Suppose that σ ∈ Aut(C).

(a) Explain why σ must fix Q, i.e., σ(α) = α for all α ∈ Q.

(b) If σ is also continuous (in the usual topology in C) explain why σ must fix R.

(c) Show that there are only two continuous field automorphisms of C

(d) If σ ∈ Aut(C) is “given by a formula”, (i.e. some recognizable function of the
real and imaginary parts), presumably it must be continuous. Explain why it is
difficult to write down automorphisms of C other than the two we know.

Solution.

(a) In class we have seen that for any field automorphism we have σ(1) = 1, and
hence σ(2) = σ(1+ 1) = σ(1)+ σ(1) = 1+ 1 = 2, and similarly σ(a) = a for every
positive integer a. Since σ is a field automorphism it is a group homomorphism
under addition, and hence preserves additive inverses, i.e, σ(−a) = −σ(a) for all
a ∈ Z. Thus (using the result for positive a) we conclude that σ fixes Z. Since
field automorphisms are also compatible with division, we then get that for any
a/b ∈ Q, σ(a/b) = σ(a)/σ(b) = a/b, and so σ fixes Q.
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(b) If f : C −→ C is a continuous function, then for any convergent sequence {an}n>0

of complex numbers with limit L we have limn→∞ f(an) = f(L). This is some-
times also written in the form limn→∞ f(an) = f(limn→∞ an), to emphasize that
continuous functions let us “pull limits through the function”.

Every real number L is a limit of a convergent sequence {an}n>0 of rational num-
bers. Hence if σ : C −→ C is a continuous automorphism of C, we have that
σ(an) = an for all n (by part (a) and since an ∈ Q) and therefore

L = lim
n>0

an = lim
n>0

σ(an) = σ(L),

where the last equality uses the fact that σ is continuous. I.e., we have that
σ(L) = L for all L ∈ R, and hence σ fixes R.

(c) By part (b) any continuous automorphism of C must fix R, and so belong to
Aut(C/R). By our theorem bounding the order of the automorphism group, we
have |Aut(C/R)| 6 [C : R] = 2. However, we already know complex conjugation
is a nontrivial automorphism of C. Together with IdC this gives |Aut(C/R)| = 2.
As both of these automorphisms are continuous, we see that they are the only
continuous automorphisms of C.

(d) If we want to write down an automorphism of C “with a formula”, presumably
the formula is a continuous function. From part (c) there are only two such
automorphisms of C, and this explains why they are the only two we ever see.

Remark. Recall that if X and Y are sets, then XY means the set of all maps from
Y to X . (For finite sets X and Y the set of all maps from Y to X has cardinality
|Y ||X|, which is where the notation comes from.) This notation is sometimes helpful
when talking about the cardinality of infinite sets. For instance, ℵ0 is the cardinal used
to denote countable sets (like N, Z, or Q). The cardinal 2ℵ0 is the cardinality of all
maps from N to 2. If you think about the binary expansion of real numbers in the real
interval (0, 1), this shows that 2ℵ0 is the same cardinality as R.

It is known that the cardinality of Aut(C) is 2(2
ℵ0 ), i.e, 2 to the cardinality of R. This is

quite large, yet we are only able to explicitly write down two of those automorphisms!

5. An impossible problem.

In order to enter Moscow State University as an undergraduate, candidates were re-
quired to pass an oral examination by professors in their area of study (as well as other
examinations in Russian, and political knowledge). For instance, to enter the mathe-
matics department, the candidate would have to answer mathematical questions posed
by some of the faculty.
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Sometimes the examiners wanted a particular candidate to fail, and a special supply of
difficult or cruel questions was kept in order to make this easier.

The following is one such question1.

Question: Find rational numbers a, b, c, and d to solve

(a+ b
√
2 )2 + (c+ d

√
2 )2 = 7 + 5

√
2.

You can try expanding the squares and collecting terms, but it isn’t so easy to see what
to do (a, b, c, and d are in Q, and not just integers).

Prove that this problem is impossible in the following simple way: Assume that there
is a solution, apply a field automorphism to the equation, and use a single property of
the real numbers to arrive at a contradiction.

Solution. The equation is an equation in Q(
√
2). The group Aut(Q(

√
2)/Q) consists

of the identity and the automorphism σ which acts by σ(a + b
√
2) = a − b

√
2. Now

assume that a solution to

(a+ b
√
2 )2 + (c+ d

√
2 )2 = 7 + 5

√
2

exists, witn a, b, c, and d ∈ Q. Applying σ, this means that the equation

(a− b
√
2 )2 + (c− d

√
2 )2 = 7− 5

√
2

would also hold. However, the right side of the equation above is negative (7−5
√
2 < 0),

and the left hand side is a sum of squares of real numbers, which is always greater than
or equal to zero. This is a contradiction, and therefore there could have been no solution
to the original equation.

Remark. Groups are the way we encode symmetry in mathematics. The symmetries
we are most used to observing are geometric ones, like the symmetries of a cube, icosahe-
dron, a rose-shaped stain glass window, or the bilateral symmetry of the human body.
In fact, our brains seem to be primed to notice geometric symmetries. In contrast,
our brains are very bad at noticing algebraic ones, as this question demonstrates. One
reason for the importance of Galois theory in mathematics is that it is the theory of
algebraic symmetries, particularly the algebraic symmetries of fields, and is applicable
everywhere that fields come up.

1At least, I have long thought it was one such question, but in writing the assignment I have been

unable to find supporting documentation, or where I got the problem from in the first place.
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