1. Let $K \subseteq L$ be fields, and $\alpha \in L$. We understand the structure of $K(\alpha)$ when α is algebraic over K. In this question we will deal with the case that α is transcendental over K.

Suppose that α is transcendental over K and let $\varphi_{\alpha}: K[x] \longrightarrow L$ be the evaluation map sending $f(x) \in K[x]$ to $f(\alpha) \in L$. Recall that this is a ring homomorphism.
(a) Explain why φ_{α} is injective.
(b) Explain how to use φ_{α} to get a homomorphism of fields $K(x) \longrightarrow L$. (SuggesTION: It is just like our argument that \mathbb{Q} is a subfield of every field of characteristic 0 , starting from the point where we know that \mathbb{Z} is a subring of every such field.)
(c) Prove that $K(\alpha) \cong K(x)$.
(d) Are $\mathbb{Q}(\pi)$ and $\mathbb{Q}(e)$ isomorphic fields? (Here $\pi \cong 3.14159265 \ldots$ and $e \cong 2.718281828 \ldots$ are the usual numbers we know.)

Solution.

(a) Since α is transcendental over K, the only polynomial $f(x) \in K[x]$ such that $f(\alpha)=0$ is the zero polynomial. Thus φ_{α} is injective.
(b) Define a map $\psi_{\alpha}: K(x) \longrightarrow L$ by

$$
\psi_{\alpha}\left(\frac{f(x)}{g(x)}\right)=\frac{\varphi_{\alpha}(f(x))}{\varphi_{\alpha}(g(x))}=\frac{f(\alpha)}{g(\alpha)} .
$$

Since $g(\alpha) \neq 0$ whenever $g(x) \neq 0$, this map is well defined. Furthermore, since φ_{α} is a ring homomorphism it follows immediately from the rules for addition and multiplication in the ring of fractions that ψ_{α} is a ring homomorphism too. This map is not the zero map since $\psi_{\alpha}(1)=1 \neq 0$. Therefore this map is an injective map of fields, and $\operatorname{Im}\left(\psi_{\alpha}\right) \cong K(x)$.
(c) The image of ψ_{α} consists of all expressions of the form

$$
\frac{c_{0}+c_{1} \alpha+c_{2} \alpha^{2}+\cdots+c_{d} \alpha^{d}}{b_{0}+b_{1} \alpha+b_{2} \alpha^{2}+\cdots+b_{e} \alpha^{e}}
$$

where $b_{0}+b_{1} x+\cdots+b_{e} x^{e}$ is not the zero polynomial, i.e., not all of the b_{j} are zero.

From the description, $\operatorname{Im}\left(\psi_{\alpha}\right)$ is a field which contains K and α, and therefore (by the definition of $K(\alpha))$ contains $K(\alpha)$.

On the other hand, we have $K \subset K(\alpha)$ and $\alpha \in K(\alpha)$, and so all expressions which can be built from α and elements of K using the field operations are in $K(\alpha)$. In particular, all expressions of the form (\dagger) are in $K(\alpha)$ and therefore $\operatorname{Im}\left(\psi_{\alpha}\right) \subseteq K(\alpha)$. Thus $K(x) \cong \operatorname{Im}\left(\psi_{\alpha}\right)=K(\alpha)$.
(d) Since both π and e are transcendental over \mathbb{Q}, By part (c) we have $\mathbb{Q}(\pi) \cong K(x) \cong$ $\mathbb{Q}(e)$, and so $\mathbb{Q}(\pi)$ and $\mathbb{Q}(e)$ are isomorphic fields.
2. Let p be a prime, n a positive integer, and write $n=m p^{k}$ with $p \nmid m$. For any a, $0 \leqslant a \leqslant n$, prove that

$$
\binom{n}{a} \equiv\left\{\begin{array}{cll}
0 & \bmod p & \text { if } p^{k} \nmid a \\
\binom{m}{\frac{a}{p^{k}}} & \bmod p & \text { if } p^{k} \mid a
\end{array}\right.
$$

(Suggestion: Consider $(x+1)^{n} \bmod p$, i.e, in \mathbb{F}_{p}.)
Solution. By the binomial theorem we have

$$
(x+1)^{n}=\sum_{a=0}^{n}\binom{n}{a} x^{a}
$$

while $\bmod p\left(\right.$ i.e., in $\left.\mathbb{F}_{p}\right)$ we have

$$
(x+1)^{n}=(x+1)^{p^{k} m}=\left((x+1)^{p^{k}}\right)^{m}=\left(x^{p^{k}}+1\right)^{m}=\sum_{b=0}^{m}\binom{m}{b}\left(x^{p^{k}}\right)^{b}=\sum_{b=0}^{m}\binom{m}{b} x^{b \cdot p^{k}}
$$

Since the second equation only has powers of p^{k}, comparing coefficients gives $\binom{n}{a} \equiv$ $0(\bmod p)$ if $p^{k} \nmid a$. On the other hand, if a is divisible by p^{k}, if we write $a=b \cdot p^{k}$ (or equivalently, that $\left.b=\frac{a}{p^{k}}\right)$ then comparing coefficients gives $\binom{n}{a} \equiv\binom{m}{b}(\bmod p)$. These two formulas were exactly what we wanted to prove.
3. Let K be a field with $\operatorname{Char}(K) \neq 2$ and suppose that L / K is a degree 2 extension. By the argument in class, that means we can express L as $K(\sqrt{\gamma})$ for some $\gamma \in K$. In class we showed that L / K must be a normal extension.
(a) Show that L / K is also a separable extension.
(b) Compute $\operatorname{Aut}(L / K)$ and describe how each element of the group acts on L.

Solution. From class we have seen that

$$
L=K(\sqrt{\gamma})=\{a+b \sqrt{\gamma} \mid a, b, \in K\} .
$$

(a) Given $\alpha=a+b \sqrt{\gamma} \in L$ (with both $a, b \in K$), then we consider two cases. If $b=0$ then $\alpha \in K$ with minimal polynomial $x-\alpha \in K[x]$. Since this polynomial only has one root, α is separable over K. If $b \neq 0$ then let

$$
q(x)=(x-(a+b \sqrt{\gamma})) \cdot(x-(a-b \sqrt{\gamma}))=x^{2}-2 a x+\left(a^{2}-b^{2} \gamma\right) \in K[x] .
$$

This polynomial has roots $\alpha=a+b \sqrt{\gamma}$ and $a-b \sqrt{\gamma}$. Since $b \neq 0$ these roots are distinct, and again α is separable over K. Since all elements of L are separable over $K, L / K$ is a seperable extension.
(b) By our bound on the autmorphism group, we have $|\operatorname{Aut}(L / K)| \leqslant[L: K]=2$, so that either $|\operatorname{Aut}(L / K)|=1$ and $\operatorname{Aut}(L / K)$ is the trivial group, or $|\operatorname{Aut}(L / K)|=2$ and $\operatorname{Aut}(L / K)$ is the group of order 2. We always have $\operatorname{Id}_{L} \in \operatorname{Aut}(L / K)$, and we will show that $\operatorname{Aut}(L / K)=2$ by finding a second autmorphism of L / K.

The polynomial $q(x)=x^{2}-\gamma \in K[x]$ has $\sqrt{\gamma}$ as a root. Any automorphism σ of L / K therefore has to take $\sqrt{\gamma}$ to a root of $q(x)$, so $\sigma(\sqrt{\gamma})$ must be either $\pm \sqrt{\gamma}$. We will now check that the map $\sigma: L \longrightarrow L$ given by $\sigma(a+b \sqrt{\gamma})=a-b \sqrt{\gamma}$ is an autmorphism of L fixing K.

From the formula, σ is given by a K-linear map, whose matrix in the K-basis 1 , $\sqrt{\gamma}$ of L is

$$
\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

This matrix has determinant -1 and so is invertible. Thus σ is a bijection from L to L compatible with addition. (From the formula for σ or the matrix we also see that $\sigma^{2}=\mathrm{Id}_{L}$, i.e, σ has order 2.) We now check that σ is compatible with multiplication.

Given $\alpha=a+b \sqrt{\gamma}$ and $\beta=c+d \sqrt{\gamma} \in L$ (with $a, b, c, d \in K$), we have $\alpha \beta=$ $(a c+b d \gamma)+(a d+b c) \sqrt{\gamma}$, and so

$$
\begin{aligned}
\sigma(\alpha) \cdot \sigma(\beta) & =(a-b \sqrt{\gamma}) \cdot(c-d \sqrt{\gamma})=(a c+(-b)(-d) \gamma)+(a(-d)+(-b) c) \sqrt{\gamma} \\
& =(a c+b d \gamma)-(a d+b c) \sqrt{\gamma}
\end{aligned}
$$

while

$$
\sigma(\alpha \cdot \beta)=\sigma((a c+b d \gamma)+(a d+b c) \sqrt{\gamma})=(a c+b d \gamma)-(a d+b c) \sqrt{\gamma}
$$

Comparing these two formulas we get $\sigma(\alpha \cdot \beta)=\sigma(\alpha) \cdot \sigma(\beta)$. Therefore σ is also compatible with multiplication. From the formula for σ we also see that σ fixes K. Therefore $\sigma \in \operatorname{Aut}(L / K)$. If $b \neq 0$ then $\sigma(a+b \sqrt{\gamma})=a-b \sqrt{\gamma} \neq a+b \sqrt{\gamma}$, and so $\sigma \neq \operatorname{Id}_{L}$. Therefore $\operatorname{Aut}(L / K)$ is the group of order 2 .

Remark. We have seen already that L / K is a normal extension. Therefore by part (a) L / K is a separable normal extension, i.e., a Galois extension. By our theorem characterizing Galois extensions this implies that $|\operatorname{Aut}(L / K)|=[L: K]$, something we have explicitly verified in this case.
4. In class we saw that if K is field and $q(x) \in K[x]$ an irreducible polynomial such that $q^{\prime}(x) \neq 0$, then $q(x)$ had no repeated roots. Prove a slightly more general version of this result : show that $f(x) \in K[x]$ has no repeated roots if and only if $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)=1$.
Solution. If $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)=1$ then there exist $u(x), v(x) \in K[x]$ such that

$$
u(x) f(x)+v(x) f^{\prime}(x)=1
$$

Let α be any root of $f(x)$. In class we have seen that if α is a root of $f(x)$ of multiplicity 2 or more, then α is also a root of $f^{\prime}(x)$. Plugging $x=\alpha$ into the equation above gives us

$$
1=u(\alpha) f(\alpha)+v(\alpha) f^{\prime}(\alpha)=u(\alpha) \cdot 0+v(\alpha) f^{\prime}(\alpha)=v(\alpha) f^{\prime}(\alpha)
$$

from which we conclude that $f^{\prime}(\alpha) \neq 0$, and therefore that α is not a repeated root of $f(x)$. Therefore we have shown that if $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)=1$ then $f(x)$ has no repeated roots.

Now suppose that α is a root of $f(x)$ of multiplicity one. Then we can write $f(x)=$ $(x-\alpha) g(x)$ with $g(\alpha) \neq 0$. Taking the derivative gives

$$
f^{\prime}(x)=g(x)+(x-\alpha) g^{\prime}(x),
$$

and plugging $x=\alpha$ into this we compute that

$$
f^{\prime}(\alpha)=g(\alpha)+0 \cdot g^{\prime}(\alpha)=g(\alpha) \neq 0
$$

In other words, if α is a root of $f(x)$ of multiplicity one then α is not a root of $f^{\prime}(x)$. Thus, if all roots of $f(x)$ have multiplicity one then $f(x)$ and $f^{\prime}(x)$ have no roots in common.

Let $h(x)=\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)$. Since $h(x)$ divides both $f(x)$ and $f^{\prime}(x)$, any root of $h(x)$ is a common root of $f(x)$ and $f^{\prime}(x)$. If $f(x)$ has no repeated roots, then as we have seen above, $f(x)$ and $f^{\prime}(x)$ have no roots in common, and therefore $h(x)$ is a polynomial with no roots. Since $h(x)$ has no roots (in any field) we conclude that $h(x)$ is a constant polynomial. Since the gcd is always monic, this means that $1=h(x)=\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)$.
5. For each of the following polynomials f_{i}, let L_{i} be the field generated by \mathbb{Q} and all the roots of f_{i}. That is, if $\alpha_{1}, \ldots, \alpha_{r}$ are the roots of f_{i}, let $L_{i}=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{s}\right)$. (In other words, L_{i} is the splitting field of each f_{i}.) In each case find all the roots of f_{i}, and find the degree of L_{i} over \mathbb{Q}.
(a) $f_{1}=x^{4}-5 x^{2}+6$.
(b) $f_{2}=x^{3}-1$.
(c) $f_{3}=x^{6}-1$.
(d) $f_{4}=x^{6}-2$.

Solution.

(a) The polynomial $f_{1}(x)$ is reducible over $\mathbb{Q}: f_{1}(x)=\left(x^{2}-2\right) \cdot\left(x^{2}-3\right)$ with roots $\pm \sqrt{2}, \pm \sqrt{3}$. The splitting field of f_{1} over \mathbb{Q} is therefore $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. In previous homework questions (H1 Q3 and H2 Q3) we have seen that $[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}]=4$.
(b) We have $f_{2}(x)=(x-1)\left(x^{2}+x+1\right)$ with roots $1, \omega$, and ω^{2}, where $\omega=e^{2 \pi i / 3}$. The splitting field for f_{2} over \mathbb{Q} is therefore $\mathbb{Q}\left(1, \omega, \omega^{2}\right)=\mathbb{Q}(\omega)$. In H3 Q3 we have shown that $[\mathbb{Q}(\omega): \mathbb{Q}]=2$, and that $q(x)=x^{2}+x+1$ is the minimal polynomial for ω.
(c) The roots of f_{3} are the sixth roots of unity : $\pm 1, \pm \omega$, and $\pm \omega^{2}$, where $\omega=e^{2 \pi i / 3}$ just as in part (b). Therefore the splitting field of $f_{3}(x)$ over \mathbb{Q} is $\mathbb{Q}\left(\pm 1, \pm \omega, \pm \omega^{2}\right)=$ $\mathbb{Q}(\omega)$. I.e., the splitting field for $f_{3}(x)$ is the same as the splitting field for $f_{2}(x)$. Of course, we again have $[\mathbb{Q}(\omega): \mathbb{Q}]=2$.
(d) The roots of $f_{4}(x)$ are the sixth roots of $2: \pm \sqrt[6]{2}, \pm \sqrt[6]{2} \omega, \pm \sqrt[6]{2} \omega^{2}$, and the splitting field of $f_{4}(x)$ over \mathbb{Q} is $\mathbb{Q}\left(\pm \sqrt[6]{2}, \pm \sqrt[6]{2} \omega, \pm \sqrt[6]{2} \omega^{2}\right)=\mathbb{Q}(\sqrt[6]{2}, \omega)$.

To compute the degree of $\mathbb{Q}(\sqrt[6]{2}, \omega)$ over \mathbb{Q}, we analyze the extension in two steps. By Eisenstein's criterion with $p=2$, the polynomial $f_{4}(x)$ is irreducible over \mathbb{Q}, and therefore $[\mathbb{Q}(\sqrt[6]{2}): \mathbb{Q}]=\operatorname{deg}\left(f_{4}(x)\right)=6$. We know the minimal polynomial of ω over \mathbb{Q} is $q(x)=x^{2}+x+1$ of degree 2 . Let $q_{M}(x)$ be the minimal polynomial of ω over $M=\mathbb{Q}(\sqrt[6]{2})$. We know that $q_{M}(x)$ divides $q(x)$ and therefore $q_{M}(x)$ has degree 1 or 2 . But $q_{M}(x)$ has degree 1 if and only if $\omega \in M$. But since $M \subset \mathbb{R}$, and since $\omega \notin \mathbb{R}$, this can't happen. Thus the degree of $q_{M}(x)$ is 2 , and $[\mathbb{Q}(\sqrt[6]{2}, \omega): \mathbb{Q}(\sqrt[6]{2})]=2$. We therefore conclude that

$$
[\mathbb{Q}(\sqrt[6]{2}, \omega): \mathbb{Q}]=[\mathbb{Q}(\sqrt[6]{2}, \omega): \mathbb{Q}(\sqrt[6]{2})] \cdot[\mathbb{Q}(\sqrt[6]{2}): \mathbb{Q}]=2 \cdot 6=12
$$

