Math 414 Answers for Homework 4

1. Let K C L be fields, and o € L. We understand the structure of K(«) when « is
algebraic over K. In this question we will deal with the case that « is transcendental
over K.

Suppose that « is transcendental over K and let ¢, : K[x] — L be the evaluation map
sending f(z) € Klx] to f(a) € L. Recall that this is a ring homomorphism.

(a) Explain why ¢, is injective.

(b) Explain how to use ¢, to get a homomorphism of fields K(x) — L. (SUGGES-
TION: It is just like our argument that Q is a subfield of every field of characteristic
0, starting from the point where we know that Z is a subring of every such field.)

(¢) Prove that K(«a) = K(z).
(d) Are Q(7) and Q(e) isomorphic fields? (Here m = 3.14159265 . ..and e = 2.718281828. ..

are the usual numbers we know.)

Solution.

(a) Since « is transcendental over K, the only polynomial f(z) € K[x] such that
f(a) =0 is the zero polynomial. Thus ¢, is injective.

(b) Define a map v,: K(x) — L by

Since g(a) # 0 whenever g(x) # 0, this map is well defined. Furthermore, since
Yo 18 a ring homomorphism it follows immediately from the rules for addition and
multiplication in the ring of fractions that v, is a ring homomorphism too. This
map is not the zero map since 1,(1) = 1 # 0. Therefore this map is an injective
map of fields, and Im(v,) = K(z).

(c) The image of 1, consists of all expressions of the form

d
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where by + by + - - - + b.x® is not the zero polynomial, i.e., not all of the b; are

Zero.



From the description, Im(#,) is a field which contains K and «, and therefore (by
the definition of K («)) contains K («).

On the other hand, we have K C K(«a) and o € K(«a), and so all expressions
which can be built from « and elements of K using the field operations are in

K(a). In particular, all expressions of the form (}) are in K(a) and therefore
Im(,) € K(«). Thus K(x) = Im(1,) = K(a).

~

(d) Since both 7 and e are transcendental over QQ, By part (c) we have Q(7) = K(x)
Q(e), and so Q(7) and Q(e) are isomorphic fields.

2. Let p be a prime, n a positive integer, and write n = mp”* with p  m. For any a,
0 < a < n, prove that

0 mod p if p¥ta
" m
<) <i) mod p if p* | a.

pk

a

(SUGGESTION: Consider (z + 1)" mod p, i.e, in F),.)
Solution. By the binomial theorem we have
" /n
1 n — a
=3 (1)

while mod p (i.e., in F,) we have

(@+1)" = @@+ 1" = (@ +17") " = @ + 1) = i (7:) (g:p’“)b = zmj (7;:) 27"

b=0 b=0

Since the second equation only has powers of p*, comparing coefficients gives (Z) =
0 (mod p) if p¥ ¥ a. On the other hand, if a is divisible by p*, if we write a = b - p* (or
equivalently, that b = I%) then comparing coefficients gives (Z) = (’Z) (mod p). These
two formulas were exactly what we wanted to prove. 0

3. Let K be a field with Char(K) # 2 and suppose that L/K is a degree 2 extension.
By the argument in class, that means we can express L as K(,/7) for some v € K. In
class we showed that L /K must be a normal extension.

(a) Show that L/K is also a separable extension.

(b) Compute Aut(L/K) and describe how each element of the group acts on L.



Solution. From class we have seen that

(a)

L=K(/) ={a+b/T|abek}.

Given o = a+b,/y € L (with both a,b € K), then we consider two cases. If b =0
then a € K with minimal polynomial © — o € K[z]. Since this polynomial only
has one root, « is separable over K. If b # 0 then let

q(z) = (x — (a+by7)) - (x — (a — by/7)) = 2% — 2ax + (a® — b*y) € K[z].

This polynomial has roots @ = a + b/ and a — b,/7. Since b # 0 these roots are
distinct, and again « is separable over K. Since all elements of L are separable
over K, L/K is a seperable extension.

By our bound on the autmorphism group, we have | Aut(L/K)| < [L: K] = 2, so
that either | Aut(L/K)| = 1 and Aut(L/K) is the trivial group, or | Aut(L/K)| = 2
and Aut(L/K) is the group of order 2. We always have Id; € Aut(L/K), and we
will show that Aut(L/K) = 2 by finding a second autmorphism of L/K.

The polynomial ¢(z) = 2® — v € K|[x] has \/7 as a root. Any automorphism o of
L/K therefore has to take \/7 to a root of q(x), so o(,/7) must be either &,/7.
We will now check that the map o : L — L given by o(a + b\/7) = a — by/7 is
an autmorphism of L fixing K.

From the formula, ¢ is given by a K-linear map, whose matrix in the K-basis 1,
V7 of Lis
1 0
(b 7).

This matrix has determinant —1 and so is invertible. Thus ¢ is a bijection from
L to L compatible with addition. (From the formula for o or the matrix we also
see that 02 = Idy, i.e, o has order 2.) We now check that o is compatible with
multiplication.

Given o = a + b\/y and 8 = c+ d\/y € L (with a,b,c,d € K), we have aff =
(ac + bdy) + (ad + be) /7, and so

ola)-o(B) = (a—=by7)-(c—dy7) = (ac+ (=b)(=d)y) + (a(=d) + (=D)c) /7
= (ac+bdy) — (ad + bc) /7,

while

o(a-B) = o ((ac+ bdy) + (ad + bc)\/Y) = (ac+ bdy) — (ad + bc)+/7.

Comparing these two formulas we get o(a - 5) = o(«) - o(8). Therefore o is also
compatible with multiplication. From the formula for o we also see that o fixes
K. Therefore 0 € Aut(L/K). If b # 0 then o(a + by/7) = a — b\/y # a + b\/7,
and so o # Idy. Therefore Aut(L/K) is the group of order 2.

3



REMARK. We have seen already that L/K is a normal extension. Therefore by part
(a) L/K is a separable normal extension, i.e., a Galois extension. By our theorem
characterizing Galois extensions this implies that | Aut(L/K)| = [L : K], something we
have explicitly verified in this case.

4. In class we saw that if K is field and ¢(x) € K[z] an irreducible polynomial such that
¢'(z) # 0, then ¢(x) had no repeated roots. Prove a slightly more general version of this
result : show that f(x) € K|z] has no repeated roots if and only if ged(f(x), f'(z)) = 1.

Solution. If ged(f(z), f’(z)) = 1 then there exist u(z),v(z) € K[x] such that
u(x) f(x) +v(x)f () = 1.

Let o be any root of f(x). In class we have seen that if « is a root of f(z) of multiplicity
2 or more, then « is also a root of f'(x). Plugging x = « into the equation above gives
us

1=u(a)f(a) +v(a)f' () = u(a) - 0+ v(a)f(a) = v(a) (@)
from which we conclude that f'(«) # 0, and therefore that « is not a repeated root of

f(x). Therefore we have shown that if ged(f(x), f'(z)) = 1 then f(x) has no repeated
roots.

Now suppose that « is a root of f(x) of multiplicity one. Then we can write f(z) =
(x — a)g(x) with g(a) # 0. Taking the derivative gives

f'(x) = g(z) + (z — a)g'(x),

and plugging x = « into this we compute that

f'(a) =g(@) +0-g'(a) = g(a) # 0.

In other words, if « is a root of f(x) of multiplicity one then « is not a root of f'(x).
Thus, if all roots of f(x) have multiplicity one then f(x) and f’(z) have no roots in
common.

Let h(z) = ged(f(x), f'(x)). Since h(z) divides both f(z) and f’'(z), any root of h(x)
is a common root of f(z) and f’(x). If f(x) has no repeated roots, then as we have
seen above, f(x) and f’(x) have no roots in common, and therefore h(x) is a polynomial
with no roots. Since h(x) has no roots (in any field) we conclude that h(z) is a constant
polynomial. Since the ged is always monic, this means that 1 = h(z) = ged(f(x), f'(x)).
U

5. For each of the following polynomials f;, let L; be the field generated by Q and all
the roots of f;. That is, if aq,..., «, are the roots of f;, let L; = Q(a,..., ;). (In
other words, L; is the splitting field of each f;.) In each case find all the roots of f;, and
find the degree of L; over Q.



(a) fi=a*—522+6

(b) f2 =% -1

(¢) fs=a—1

(d) fa=2a%-2
Solution.

(a)

(b)

The polynomial f;(z) is reducible over Q : fi(x) = (2? — 2) - (* — 3) with roots
++/2, £1/3. The splitting field of f; over Q is therefore Q(\/i, \/§) In previous
homework questions (H1 Q3 and H2 Q3) we have seen that [Q(v/2,v/3) : Q] = 4.

We have fo(z) = (v —1)(22 42+ 1) with roots 1, w, and w?, where w = /3. The
splitting field for f, over Q is therefore Q(1,w,w?) = Q(w). In H3 Q3 we have
shown that [Q(w) : Q] = 2, and that ¢(z) = 2® + = + 1 is the minimal polynomial
for w.

The roots of f5 are the sixth roots of unity : +1, 4w, and +w?, where w = €27%/3

just as in part (b). Therefore the splitting field of f3(x) over Q is Q(&1, +w, +w?) =
Q(w). Le., the splitting field for f3(z) is the same as the splitting field for fy(x).
Of course, we again have [Q(w) : Q] = 2.

The roots of f4(x) are the sixth roots of 2: +v/2, £v/2w, +v/2w?, and the splitting
field of f4(z) over Q is Q(£V/2, £v/2w, £v2w?) = Q(v/2,w).

To compute the degree of Q(v/2,w) over Q, we analyze the extension in two steps.
By Eisenstein’s criterion with p = 2, the polynomial f,(z) is irreducible over Q,
and therefore [Q(v/2) : Q] = deg(f4(x)) = 6. We know the minimal polynomial of
w over Q is g(z) = 22 + z + 1 of degree 2. Let qp(z) be the minimal polynomial
of w over M = Q(v/2). We know that gy (z) divides g(z) and therefore gy ()
has degree 1 or 2. But ¢y (z) has degree 1 if and only if w € M. But since
M C R, and since w ¢ R, this can’t happen. Thus the degree of ¢/ (z) is 2, and
[Q(V/2,w) : Q(v/2)] = 2. We therefore conclude that

[Q(V2,w): Q] = [Q(V2,w) : Q(V2)] - [Q(V2) : Q] =2- 6 = 12.



