
Math 414 Answers for Homework 6

1. Let L/K be a finite extension and G = Aut(L/K). Even if L/K is not a Galois
extension we always have order-reversing maps of lattices

{

lattice of subgroups H of G
} {

lattice of intermediate fields M
}

H LH

Aut(L/M) M

However, if L/K is not a Galois extension, there is no reason that these maps have to be
bijections. In this problem we will see this in a very simple example. (In some sense the
example may be too small to be convincing, but it does show that the correspondence
doesn’t work out in general.)

Let L = Q( 3
√
2) and K = Q.

(a) Is L/K a Galois extension?

(b) Find [L : K].

(c) Find all intermediate fields M , K ⊆ M ⊆ L. (Suggestion: Consider the tower
law [L : K] = [L : M ] · [M : K] and find the possible degrees of the intermediate
fields first.)

(d) Write down the lattice of intermediate fields.

(e) Let G = Aut(L/K). If σ ∈ G explain where σ must send 3
√
2. (Suggestion: As

usual you should start with the minimal polynomial of 3
√
2 over Q.)

(f) Compute G (i.e., find all elements of G).

(g) Write down the lattice of all subgroups of G. (This will be quite small.)

(h) For each subgroup H of G, find LH .

(i) For each intermediate field M , find Aut(L/M).

Solution.

(a) No, L/K is not a Galois extension. The minimal polynomial of 3
√
2 over Q is

q(x) = x3 − 2 with roots 3
√
2, 3

√
2ω, and 3

√
2ω2, where ω = e2πi/3. The last two

roots are not in L, so L/Q is not a normal extension, and hence not a Galois
extension.
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(b) [L : K] = deg(x3 − 2) = 3.

(c) Let M be an intermediate field. Then we have

3 = [L : K] = [L : M ] · [M : K]

since 3 is a prime number, the only possible factorization is 3 · 1 or 1 · 3, giving
either [M : K] = 1 and so M = K or [L : M ] = 1 and so L = M . That is, the
only intermediate fields are L and M .

(d) The lattice of intermediate fields is

L

K

.

(e) Let σ be any element of G = Aut(L/K), then σ( 3
√
2) must be another root of

q(x) = x3−2. The only root of q(x) in L is 3
√
2, so we conclude that σ( 3

√
2) = 3

√
2.

In other words, every element of Aut(L/K) must take 3
√
2 to itself.

(f) The element 3
√
2 generates L over Q, and in fact (from (b)) we have

L =

{

a + b
3
√
2 + c

(

3
√
2
)2

a, b, c ∈ Q

}

.

By part (e), if σ ∈ Aut(L/K) we have σ( 3
√
2) = 3

√
2 and so for an arbitrary

γ = a+ b 3
√
2 + c

(

3
√
2
)2 ∈ L we have

σ(γ) = σ

(

a+ b
3
√
2 + c

(

3
√
2
)2
)

= aσ(1)+bσ(
3
√
2)+c

(

σ(
3
√
2)
)2

= a+b
3
√
2+c

(

3
√
2
)2

= γ.

Thus σ acts as the identity on L. Since this is true for all σ ∈ Aut(L/K), we
conclude that the only element of Aut(L/K) is e, i.e., that G = {e}.

(g) The lattice of subgroups of G is e (quite small!).

(h) The only subgroup of G is G = {e} = G with fixed field LG = L.

(i) For M = K we have already computed that Aut(L/K) = {e}. For M = L we
also have Aut(L/L) = {e}.

Thus, in this case the order-reversing maps of lattices are
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subgroups int. fields

L

K

e

Unlike the case of a Galois extension, these maps are not bijections!

2. Suppose that (α1, β1), . . . , (αk, βk) are points of C2 (i.e, αi, βi ∈ C), and that the
set S = {(α1, β1), . . . , (αk, βk)} is stable under complex conjugation. (This means that
if (αi, βi) ∈ S then (αi, βi) ∈ S too). For any d > 0, consider the C-vector space Vd of
polynomials of degree 6 d in C[x, y] which are zero at all (αi, βi), i = 1,. . . , k. Show
that Vd has a basis consisting of polynomials with real coefficients.

Solution. Let G = {IdC, τ}, where τ is complex conjugation. Let V be the vector space
of polynomials of degree 6 d. The vector space V has a basis of monomials {xayb} such
that a+ b 6 d, and is isomorphic to CN , with N =

(

d+2

2

)

. We let G act on a polynomial
f ∈ V by acting on the coefficients : for any σ ∈ G, f = c00+c10x+c01y+ · · ·+cabx

ayb+
· · · c0,dyd ∈ V , we have

σ(f) = σ(c00) + σ(c10)x+ σ(c01)y + · · ·+ σ(cab)x
ayb + · · ·σ(c0,d)yd.

Now let Vd be the subspace of V consisting of those polynomials which vanish at the
points of S. We claim that Vd is stable under the action of G, and so (by the descent
lemma) has a basis with coefficients in CG = R.

Let f ∈ Vd be any polynomial. We need to show that σ(f) ∈ Vd for all σ ∈ G. This is
clear for σ = IdC since IdC(f) = f , so we only need to check for σ = τ . By definition,
τ(f) is in Vd if and only if τ(f)(αi, βi) = 0 for all (αi, βi) ∈ S. However,

τ(f)(αi, βi) = f(αi, βi) = f(αi, βi).

Since S is stable under complex conjugation, (αi, βi) ∈ S, and since f is in Vd, f(αi, βi) =
0. Thus

τ(f)(αi, βi) = f(αi, βi) = 0 = 0.

Since this holds for all (αi, βi) ∈ S, we conclude that τ(f) ∈ Vd, and hence that Vd is
stable under the action of G.

Thus, by the descent lemma, Vd has a basis with coefficients in R.
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3. In this problem we will work out the Galois correspondence in the case L = Q(
√
2,
√
3)

and K = Q. Recall that from H3 Q2(d) we know that {1,
√
2,

√
3,

√
6} is a basis of

L/K.

(a) Show that L/K is a Galois extension.

Let G = Gal(L/K). In this case it turns out that G is the Klein four-group, G =
{e, τ1, τ2, τ1τ2} where all elements except e have order 2, and τ1 and τ2 commute. The
action of G on L may be deduced from the information :

τ1

√
2 −

√
2

√
3

√
3

and

τ2

√
2

√
2

√
3 −

√
3

.

(b) Deduce the action of τ1, τ2 on
√
6.

(c) Deduce the action of τ1, τ2, and τ1τ2 on an arbitrary element a+ b
√
2+ c

√
3+d

√
6

of L (with a, b, c, d ∈ Q).

(d) Find all subgroups of G and write down the (reversed) lattice of subgroups of G

(e) For each subgroup H of G, find the fixed field LH .

Suggestion: To find the elements of L fixed by an element σ of G, start with
a general element α = a + b

√
2 + c

√
3 + d

√
6 of L, write down the equation

σ(α) = α, and consider it as a system of linear equations in the unknowns a, b,
c, and d. Solutions to the equations are elements of L fixed by σ. (Here you will
need to use your formula from (c) to see what σ(α) is.)

(f) Write down the lattice of intermediate fields of L/K.

Solution.

(a) The generators of L/Q are
√
2,

√
3 with minimal polynomials x2 − 2 and x2 − 3

respectively. The roots of these polynomials are ±
√
2 and ±

√
3, all of which are

in L. Thus L/Q is a normal extension. Since we are in characteristic zero, L/Q is
automatically a separable extension, and so L/Q is a Galois extension.

(b)
τ1(

√
6) = τ1(

√
2 ·

√
3) = τ1(

√
2) · τ1(

√
3) = (−

√
2) · (

√
3) = −

√
6.

τ2(
√
6) = τ2(

√
2 ·

√
3) = τ2(

√
2) · τ2(

√
3) = (

√
2) · (−

√
3) = −

√
6.
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(c) We have

τ1
(

a+ b
√
2 + c

√
3 + d

√
6
)

= a+ bτ1(
√
2) + cτ1(

√
3) + dτ1(

√
6) = a− b

√
2 + c

√
3− d

√
6.

τ2
(

a+ b
√
2 + c

√
3 + d

√
6
)

= a+ bτ2(
√
2) + cτ2(

√
3) + dτ2(

√
6) = a+ b

√
2− c

√
3− d

√
6.

τ1τ2
(

a+ b
√
2 + c

√
3 + d

√
6
)

= a+ bτ1τ2(
√
2) + cτ1τ2(

√
3) + dτ1τ2(

√
6) = a− b

√
2− c

√
3 + d

√
6.

(d) Since G has order 4, any subgroup of G other than G and {e} has order 2, and so
corresponds to an element of order 2. The reversed lattice of subgroups is therefore

G

{e, τ1} {e, τ2} {e, τ1τ2}

{e}

.

(e) To find the fixed field LHi for any of the subgroups Hi of order 2, it is enough to
find the elements of L fixed under the generator of Hi. Using the formulae from
(c), we have

a+ b
√
2 + c

√
3 + d

√
6 = τ1

(

a+ b
√
2 + c

√
3 + d

√
6
)

= a− b
√
2 + c

√
3− d

√
6

only if b = −b and d = −d, i.e, b = d = 0 so that the element is of the form
a + c

√
3 and so L{e,τ1} = Q(

√
3).

Similarly, we have

a+ b
√
2 + c

√
3 + d

√
6 = τ2

(

a+ b
√
2 + c

√
3 + d

√
6
)

= a + b
√
2− c

√
3− d

√
6

if and only if d = 0 and c = 0, so that the element is of the form a + b
√
2, and

L{e,τ2} = Q(
√
2).

Finally,

a+ b
√
2 + c

√
3 + d

√
6 = τ1τ2

(

a+ b
√
2 + c

√
3 + d

√
6
)

= a− b
√
2− c

√
3 + d

√
6

if and only if b = 0 and c = 0, so that the element is of the form a + d
√
6, and

L{e,τ1τ2} = Q(
√
6).

(f) Thus the corresponding lattice of intermediate fields is

Q

Q(
√
3) Q(

√
2) Q(

√
6)

Q(
√
2,
√
3)

.
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4. Let L/K be a Galois extension, G = Gal(L/K), and set d = |G| = [L : K]. Let
σ1,. . . , σd be the elements of G, and choose any basis α1,. . . , αd of L over K. Explain
why the determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σ1(α1) σ1(α2) σ1(α3) · · · σ1(αd)
σ2(α1) σ2(α2) σ2(α3) · · · σ2(αd)
σ3(α1) σ3(α2) σ3(α3) · · · σ3(αd)

...
...

...
. . .

...
σd(α1) σd(α2) σd(α3) · · · σd(αd)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0.

(Suggestion : Consider the matrix as giving a linear map Ld −→ Ld and use part of
the argument from the proof of Artin’s lemma.)

Solution. Consider the map Ld −→ Ld given by the matrix above, and let W be
the kernel of this map. If the determinant of the matrix is zero, then dimL(W ) > 1.
In the proof of Artin’s lemma we have seen that the kernel is stable under the action
of G, and hence by the descent lemma, W has a basis consisting of elements whose
coordinates are in K. Since dimL(W ) > 1 there is at least one such basis element, say
w = (c1, c2, . . . , cd). I.e., we now have (c1, . . . , cd) ∈ W with the ci ∈ K, and not all
ci = 0.

Since w is in the kernel of the matrix, for each j we have

σj(α1) · c1 + σj(α2) · c2 + · · ·+ σj(αd) · cd = 0.

One of the elements in the group is the identity. For that element the equation above
becomes

c1α1 + c2α2 + · · ·+ cdαd = 0,

with all the ci ∈ K and at least one nonzero. This contradicts the assumption that
α1,. . . , αd are linearly independent over K.

The contradiction shows that the determinant above must be nonzero.
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