1. Let L / K be a finite extension and $G=\operatorname{Aut}(L / K)$. Even if L / K is not a Galois extension we always have order-reversing maps of lattices

$$
\{\text { lattice of subgroups } H \text { of } G\} \underset{\text { Aut }(L / M) \longleftrightarrow L^{H}}{\rightleftarrows} \text { H} \text { }\{\text { lattice of intermediate fields } M\}
$$

However, if L / K is not a Galois extension, there is no reason that these maps have to be bijections. In this problem we will see this in a very simple example. (In some sense the example may be too small to be convincing, but it does show that the correspondence doesn't work out in general.)
Let $L=\mathbb{Q}(\sqrt[3]{2})$ and $K=\mathbb{Q}$.
(a) Is L / K a Galois extension?
(b) Find $[L: K]$.
(c) Find all intermediate fields $M, K \subseteq M \subseteq L$. (Suggestion: Consider the tower law $[L: K]=[L: M] \cdot[M: K]$ and find the possible degrees of the intermediate fields first.)
(d) Write down the lattice of intermediate fields.
(e) Let $G=\operatorname{Aut}(L / K)$. If $\sigma \in G$ explain where σ must send $\sqrt[3]{2}$. (Suggestion: As usual you should start with the minimal polynomial of $\sqrt[3]{2}$ over \mathbb{Q}.)
(f) Compute G (i.e., find all elements of G).
(g) Write down the lattice of all subgroups of G. (This will be quite small.)
(h) For each subgroup H of G, find L^{H}.
(i) For each intermediate field M, find $\operatorname{Aut}(L / M)$.

Solution.

(a) No, L / K is not a Galois extension. The minimal polynomial of $\sqrt[3]{2}$ over \mathbb{Q} is $q(x)=x^{3}-2$ with roots $\sqrt[3]{2}, \sqrt[3]{2} \omega$, and $\sqrt[3]{2} \omega^{2}$, where $\omega=e^{2 \pi i / 3}$. The last two roots are not in L, so L / \mathbb{Q} is not a normal extension, and hence not a Galois extension.
(b) $[L: K]=\operatorname{deg}\left(x^{3}-2\right)=3$.
(c) Let M be an intermediate field. Then we have

$$
3=[L: K]=[L: M] \cdot[M: K]
$$

since 3 is a prime number, the only possible factorization is $3 \cdot 1$ or $1 \cdot 3$, giving either $[M: K]=1$ and so $M=K$ or $[L: M]=1$ and so $L=M$. That is, the only intermediate fields are L and M.
(d) The lattice of intermediate fields is

(e) Let σ be any element of $G=\operatorname{Aut}(L / K)$, then $\sigma(\sqrt[3]{2})$ must be another root of $q(x)=x^{3}-2$. The only root of $q(x)$ in L is $\sqrt[3]{2}$, so we conclude that $\sigma(\sqrt[3]{2})=\sqrt[3]{2}$. In other words, every element of $\operatorname{Aut}(L / K)$ must take $\sqrt[3]{2}$ to itself.
(f) The element $\sqrt[3]{2}$ generates L over \mathbb{Q}, and in fact (from (b)) we have

$$
L=\left\{a+b \sqrt[3]{2}+c(\sqrt[3]{2})^{2} \mid a, b, c \in \mathbb{Q}\right\} .
$$

By part (e), if $\sigma \in \operatorname{Aut}(L / K)$ we have $\sigma(\sqrt[3]{2})=\sqrt[3]{2}$ and so for an arbitrary $\gamma=a+b \sqrt[3]{2}+c(\sqrt[3]{2})^{2} \in L$ we have
$\sigma(\gamma)=\sigma\left(a+b \sqrt[3]{2}+c(\sqrt[3]{2})^{2}\right)=a \sigma(1)+b \sigma(\sqrt[3]{2})+c(\sigma(\sqrt[3]{2}))^{2}=a+b \sqrt[3]{2}+c(\sqrt[3]{2})^{2}=\gamma$.
Thus σ acts as the identity on L. Since this is true for all $\sigma \in \operatorname{Aut}(L / K)$, we conclude that the only element of $\operatorname{Aut}(L / K)$ is e, i.e., that $G=\{e\}$.
(g) The lattice of subgroups of G is θ (quite small!).
(h) The only subgroup of G is $G=\{e\}=G$ with fixed field $L^{G}=L$.
(i) For $M=K$ we have already computed that $\operatorname{Aut}(L / K)=\{e\}$. For $M=L$ we also have $\operatorname{Aut}(L / L)=\{e\}$.

Thus, in this case the order-reversing maps of lattices are

Unlike the case of a Galois extension, these maps are not bijections!
2. Suppose that $\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{k}, \beta_{k}\right)$ are points of \mathbb{C}^{2} (i.e, $\alpha_{i}, \beta_{i} \in \mathbb{C}$), and that the set $S=\left\{\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{k}, \beta_{k}\right)\right\}$ is stable under complex conjugation. (This means that if $\left(\alpha_{i}, \beta_{i}\right) \in S$ then $\left(\overline{\alpha_{i}}, \overline{\beta_{i}}\right) \in S$ too). For any $d \geqslant 0$, consider the \mathbb{C}-vector space V_{d} of polynomials of degree $\leqslant d$ in $\mathbb{C}[x, y]$ which are zero at all $\left(\alpha_{i}, \beta_{i}\right), i=1, \ldots, k$. Show that V_{d} has a basis consisting of polynomials with real coefficients.

Solution. Let $G=\left\{\operatorname{Id}_{\mathbb{C}}, \tau\right\}$, where τ is complex conjugation. Let V be the vector space of polynomials of degree $\leqslant d$. The vector space V has a basis of monomials $\left\{x^{a} y^{b}\right\}$ such that $a+b \leqslant d$, and is isomorphic to \mathbb{C}^{N}, with $N=\binom{d+2}{2}$. We let G act on a polynomial $f \in V$ by acting on the coefficients : for any $\sigma \in G, f=c_{00}+c_{10} x+c_{01} y+\cdots+c_{a b} x^{a} y^{b}+$ $\cdots c_{0, d} y^{d} \in V$, we have

$$
\sigma(f)=\sigma\left(c_{00}\right)+\sigma\left(c_{10}\right) x+\sigma\left(c_{01}\right) y+\cdots+\sigma\left(c_{a b}\right) x^{a} y^{b}+\cdots \sigma\left(c_{0, d}\right) y^{d}
$$

Now let V_{d} be the subspace of V consisting of those polynomials which vanish at the points of S. We claim that V_{d} is stable under the action of G, and so (by the descent lemma) has a basis with coefficients in $\mathbb{C}^{G}=\mathbb{R}$.

Let $f \in V_{d}$ be any polynomial. We need to show that $\sigma(f) \in V_{d}$ for all $\sigma \in G$. This is clear for $\sigma=\operatorname{Id}_{\mathbb{C}}$ since $\operatorname{Id}_{\mathbb{C}}(f)=f$, so we only need to check for $\sigma=\tau$. By definition, $\tau(f)$ is in V_{d} if and only if $\tau(f)\left(\alpha_{i}, \beta_{i}\right)=0$ for all $\left(\alpha_{i}, \beta_{i}\right) \in S$. However,

$$
\tau(f)\left(\alpha_{i}, \beta_{i}\right)=\bar{f}\left(\alpha_{i}, \beta_{i}\right)=\overline{f\left(\overline{\alpha_{i}}, \overline{\beta_{i}}\right)}
$$

Since S is stable under complex conjugation, $\left(\overline{\alpha_{i}}, \overline{\beta_{i}}\right) \in S$, and since f is in $V_{d}, f\left(\overline{\alpha_{i}}, \overline{\beta_{i}}\right)=$ 0 . Thus

$$
\tau(f)\left(\alpha_{i}, \beta_{i}\right)=\overline{f\left(\overline{\alpha_{i}}, \overline{\beta_{i}}\right)}=\overline{0}=0
$$

Since this holds for all $\left(\alpha_{i}, \beta_{i}\right) \in S$, we conclude that $\tau(f) \in V_{d}$, and hence that V_{d} is stable under the action of G.
Thus, by the descent lemma, V_{d} has a basis with coefficients in \mathbb{R}.
3. In this problem we will work out the Galois correspondence in the case $L=\mathbb{Q}(\sqrt{2}, \sqrt{3})$ and $K=\mathbb{Q}$. Recall that from H3 Q2(d) we know that $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ is a basis of L / K.
(a) Show that L / K is a Galois extension.

Let $G=\operatorname{Gal}(L / K)$. In this case it turns out that G is the Klein four-group, $G=$ $\left\{e, \tau_{1}, \tau_{2}, \tau_{1} \tau_{2}\right\}$ where all elements except e have order 2 , and τ_{1} and τ_{2} commute. The action of G on L may be deduced from the information :

τ_{1}
$\sqrt{2} \longmapsto-\sqrt{2}$
$\sqrt{3} \longmapsto \sqrt{3}$

(b) Deduce the action of τ_{1}, τ_{2} on $\sqrt{6}$.
(c) Deduce the action of τ_{1}, τ_{2}, and $\tau_{1} \tau_{2}$ on an arbitrary element $a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}$ of L (with $a, b, c, d \in \mathbb{Q}$).
(d) Find all subgroups of G and write down the (reversed) lattice of subgroups of G
(e) For each subgroup H of G, find the fixed field L^{H}.

Suggestion: To find the elements of L fixed by an element σ of G, start with a general element $\alpha=a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}$ of L, write down the equation $\sigma(\alpha)=\alpha$, and consider it as a system of linear equations in the unknowns a, b, c, and d. Solutions to the equations are elements of L fixed by σ. (Here you will need to use your formula from (c) to see what $\sigma(\alpha)$ is.)
(f) Write down the lattice of intermediate fields of L / K.

Solution.

(a) The generators of L / \mathbb{Q} are $\sqrt{2}, \sqrt{3}$ with minimal polynomials $x^{2}-2$ and $x^{2}-3$ respectively. The roots of these polynomials are $\pm \sqrt{2}$ and $\pm \sqrt{3}$, all of which are in L. Thus L / \mathbb{Q} is a normal extension. Since we are in characteristic zero, L / \mathbb{Q} is automatically a separable extension, and so L / \mathbb{Q} is a Galois extension.
(b)

$$
\begin{aligned}
& \tau_{1}(\sqrt{6})=\tau_{1}(\sqrt{2} \cdot \sqrt{3})=\tau_{1}(\sqrt{2}) \cdot \tau_{1}(\sqrt{3})=(-\sqrt{2}) \cdot(\sqrt{3})=-\sqrt{6} . \\
& \tau_{2}(\sqrt{6})=\tau_{2}(\sqrt{2} \cdot \sqrt{3})=\tau_{2}(\sqrt{2}) \cdot \tau_{2}(\sqrt{3})=(\sqrt{2}) \cdot(-\sqrt{3})=-\sqrt{6} .
\end{aligned}
$$

(c) We have
$\tau_{1}(a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6})=a+b \tau_{1}(\sqrt{2})+c \tau_{1}(\sqrt{3})+d \tau_{1}(\sqrt{6})=a-b \sqrt{2}+c \sqrt{3}-d \sqrt{6}$.
$\tau_{2}(a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6})=a+b \tau_{2}(\sqrt{2})+c \tau_{2}(\sqrt{3})+d \tau_{2}(\sqrt{6})=a+b \sqrt{2}-c \sqrt{3}-d \sqrt{6}$.
$\tau_{1} \tau_{2}(a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6})=a+b \tau_{1} \tau_{2}(\sqrt{2})+c \tau_{1} \tau_{2}(\sqrt{3})+d \tau_{1} \tau_{2}(\sqrt{6})=a-b \sqrt{2}-c \sqrt{3}+d \sqrt{6}$.
(d) Since G has order 4, any subgroup of G other than G and $\{e\}$ has order 2 , and so corresponds to an element of order 2. The reversed lattice of subgroups is therefore

(e) To find the fixed field $L^{H_{i}}$ for any of the subgroups H_{i} of order 2, it is enough to find the elements of L fixed under the generator of H_{i}. Using the formulae from (c), we have

$$
a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}=\tau_{1}(a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6})=a-b \sqrt{2}+c \sqrt{3}-d \sqrt{6}
$$

only if $b=-b$ and $d=-d$, i.e, $b=d=0$ so that the element is of the form $a+c \sqrt{3}$ and so $L^{\left\{e, \tau_{1}\right\}}=\mathbb{Q}(\sqrt{3})$.

Similarly, we have

$$
a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}=\tau_{2}(a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6})=a+b \sqrt{2}-c \sqrt{3}-d \sqrt{6}
$$

if and only if $d=0$ and $c=0$, so that the element is of the form $a+b \sqrt{2}$, and $L^{\left\{e, \tau_{2}\right\}}=\mathbb{Q}(\sqrt{2})$.

Finally,

$$
a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}=\tau_{1} \tau_{2}(a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6})=a-b \sqrt{2}-c \sqrt{3}+d \sqrt{6}
$$

if and only if $b=0$ and $c=0$, so that the element is of the form $a+d \sqrt{6}$, and $L^{\left\{e, \tau_{1} \tau_{2}\right\}}=\mathbb{Q}(\sqrt{6})$.
(f) Thus the corresponding lattice of intermediate fields is

4. Let L / K be a Galois extension, $G=\operatorname{Gal}(L / K)$, and set $d=|G|=[L: K]$. Let $\sigma_{1}, \ldots, \sigma_{d}$ be the elements of G, and choose any basis $\alpha_{1}, \ldots, \alpha_{d}$ of L over K. Explain why the determinant

$$
\left|\begin{array}{ccccc}
\sigma_{1}\left(\alpha_{1}\right) & \sigma_{1}\left(\alpha_{2}\right) & \sigma_{1}\left(\alpha_{3}\right) & \cdots & \sigma_{1}\left(\alpha_{d}\right) \\
\sigma_{2}\left(\alpha_{1}\right) & \sigma_{2}\left(\alpha_{2}\right) & \sigma_{2}\left(\alpha_{3}\right) & \cdots & \sigma_{2}\left(\alpha_{d}\right) \\
\sigma_{3}\left(\alpha_{1}\right) & \sigma_{3}\left(\alpha_{2}\right) & \sigma_{3}\left(\alpha_{3}\right) & \cdots & \sigma_{3}\left(\alpha_{d}\right) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\sigma_{d}\left(\alpha_{1}\right) & \sigma_{d}\left(\alpha_{2}\right) & \sigma_{d}\left(\alpha_{3}\right) & \cdots & \sigma_{d}\left(\alpha_{d}\right)
\end{array}\right| \neq 0
$$

(SugGestion : Consider the matrix as giving a linear map $L^{d} \longrightarrow L^{d}$ and use part of the argument from the proof of Artin's lemma.)
Solution. Consider the map $L^{d} \longrightarrow L^{d}$ given by the matrix above, and let W be the kernel of this map. If the determinant of the matrix is zero, then $\operatorname{dim}_{L}(W) \geqslant 1$. In the proof of Artin's lemma we have seen that the kernel is stable under the action of G, and hence by the descent lemma, W has a basis consisting of elements whose coordinates are in K. Since $\operatorname{dim}_{L}(W) \geqslant 1$ there is at least one such basis element, say $w=\left(c_{1}, c_{2}, \ldots, c_{d}\right)$. I.e., we now have $\left(c_{1}, \ldots, c_{d}\right) \in W$ with the $c_{i} \in K$, and not all $c_{i}=0$.

Since w is in the kernel of the matrix, for each j we have

$$
\sigma_{j}\left(\alpha_{1}\right) \cdot c_{1}+\sigma_{j}\left(\alpha_{2}\right) \cdot c_{2}+\cdots+\sigma_{j}\left(\alpha_{d}\right) \cdot c_{d}=0
$$

One of the elements in the group is the identity. For that element the equation above becomes

$$
c_{1} \alpha_{1}+c_{2} \alpha_{2}+\cdots+c_{d} \alpha_{d}=0
$$

with all the $c_{i} \in K$ and at least one nonzero. This contradicts the assumption that $\alpha_{1}, \ldots, \alpha_{d}$ are linearly independent over K.

The contradiction shows that the determinant above must be nonzero.

