1. Let L/K be a finite extension and $G = \operatorname{Aut}(L/K)$. Even if L/K is not a Galois extension we always have order-reversing maps of lattices

 $\begin{cases} \text{lattice of subgroups } H \text{ of } G \end{cases} \xrightarrow[Aut(L/M)]{} \underset{M}{\longleftarrow} M \end{cases} \begin{cases} \text{lattice of intermediate fields } M \end{cases}$

However, if L/K is not a Galois extension, there is no reason that these maps have to be bijections. In this problem we will see this in a very simple example. (In some sense the example may be too small to be convincing, but it does show that the correspondence doesn't work out in general.)

Let $L = \mathbb{Q}(\sqrt[3]{2})$ and $K = \mathbb{Q}$.

- (a) Is L/K a Galois extension?
- (b) Find [L:K].
- (c) Find all intermediate fields $M, K \subseteq M \subseteq L$. (SUGGESTION: Consider the tower law $[L:K] = [L:M] \cdot [M:K]$ and find the possible degrees of the intermediate fields first.)
- (d) Write down the lattice of intermediate fields.
- (e) Let $G = \operatorname{Aut}(L/K)$. If $\sigma \in G$ explain where σ must send $\sqrt[3]{2}$. (SUGGESTION: As usual you should start with the minimal polynomial of $\sqrt[3]{2}$ over \mathbb{Q} .)
- (f) Compute G (i.e., find all elements of G).
- (g) Write down the lattice of all subgroups of G. (This will be quite small.)
- (h) For each subgroup H of G, find L^{H} .
- (i) For each intermediate field M, find $\operatorname{Aut}(L/M)$.

Solution.

(a) No, L/K is not a Galois extension. The minimal polynomial of $\sqrt[3]{2}$ over \mathbb{Q} is $q(x) = x^3 - 2$ with roots $\sqrt[3]{2}$, $\sqrt[3]{2}\omega$, and $\sqrt[3]{2}\omega^2$, where $\omega = e^{2\pi i/3}$. The last two roots are not in L, so L/\mathbb{Q} is not a normal extension, and hence not a Galois extension.

- (b) $[L:K] = \deg(x^3 2) = 3.$
- (c) Let M be an intermediate field. Then we have

$$3 = [L:K] = [L:M] \cdot [M:K]$$

since 3 is a prime number, the only possible factorization is $3 \cdot 1$ or $1 \cdot 3$, giving either [M:K] = 1 and so M = K or [L:M] = 1 and so L = M. That is, the only intermediate fields are L and M.

- (e) Let σ be any element of $G = \operatorname{Aut}(L/K)$, then $\sigma(\sqrt[3]{2})$ must be another root of $q(x) = x^3 - 2$. The only root of q(x) in L is $\sqrt[3]{2}$, so we conclude that $\sigma(\sqrt[3]{2}) = \sqrt[3]{2}$. In other words, every element of $\operatorname{Aut}(L/K)$ must take $\sqrt[3]{2}$ to itself.
- (f) The element $\sqrt[3]{2}$ generates L over \mathbb{Q} , and in fact (from (b)) we have

$$L = \left\{ a + b\sqrt[3]{2} + c\left(\sqrt[3]{2}\right)^2 \mid a, b, c \in \mathbb{Q} \right\}.$$

By part (e), if $\sigma \in \operatorname{Aut}(L/K)$ we have $\sigma(\sqrt[3]{2}) = \sqrt[3]{2}$ and so for an arbitrary $\gamma = a + b\sqrt[3]{2} + c(\sqrt[3]{2})^2 \in L$ we have

$$\sigma(\gamma) = \sigma \left(a + b\sqrt[3]{2} + c \left(\sqrt[3]{2}\right)^2 \right) = a\sigma(1) + b\sigma(\sqrt[3]{2}) + c \left(\sigma(\sqrt[3]{2})\right)^2 = a + b\sqrt[3]{2} + c \left(\sqrt[3]{2}\right)^2 = \gamma.$$

Thus σ acts as the identity on L. Since this is true for all $\sigma \in \operatorname{Aut}(L/K)$, we conclude that the only element of $\operatorname{Aut}(L/K)$ is e, i.e., that $G = \{e\}$.

- (g) The lattice of subgroups of G is e (quite small!).
- (h) The only subgroup of G is $G = \{e\} = G$ with fixed field $L^G = L$.
- (i) For M = K we have already computed that $Aut(L/K) = \{e\}$. For M = L we also have $\operatorname{Aut}(L/L) = \{e\}.$

Thus, in this case the order-reversing maps of lattices are

Unlike the case of a Galois extension, these maps are not bijections!

2. Suppose that $(\alpha_1, \beta_1), \ldots, (\alpha_k, \beta_k)$ are points of \mathbb{C}^2 (i.e, $\alpha_i, \beta_i \in \mathbb{C}$), and that the set $S = \{(\alpha_1, \beta_1), \ldots, (\alpha_k, \beta_k)\}$ is stable under complex conjugation. (This means that if $(\alpha_i, \beta_i) \in S$ then $(\overline{\alpha_i}, \overline{\beta_i}) \in S$ too). For any $d \ge 0$, consider the \mathbb{C} -vector space V_d of polynomials of degree $\leq d$ in $\mathbb{C}[x, y]$ which are zero at all (α_i, β_i) , $i = 1, \ldots, k$. Show that V_d has a basis consisting of polynomials with real coefficients.

Solution. Let $G = \{ \mathrm{Id}_{\mathbb{C}}, \tau \}$, where τ is complex conjugation. Let V be the vector space of polynomials of degree $\leq d$. The vector space V has a basis of monomials $\{x^a y^b\}$ such that $a + b \leq d$, and is isomorphic to \mathbb{C}^N , with $N = \binom{d+2}{2}$. We let G act on a polynomial $f \in V$ by acting on the coefficients : for any $\sigma \in G$, $f = c_{00} + c_{10}x + c_{01}y + \cdots + c_{ab}x^a y^b + \cdots + c_{0,d}y^d \in V$, we have

$$\sigma(f) = \sigma(c_{00}) + \sigma(c_{10})x + \sigma(c_{01})y + \dots + \sigma(c_{ab})x^a y^b + \dots + \sigma(c_{0,d})y^d.$$

Now let V_d be the subspace of V consisting of those polynomials which vanish at the points of S. We claim that V_d is stable under the action of G, and so (by the descent lemma) has a basis with coefficients in $\mathbb{C}^G = \mathbb{R}$.

Let $f \in V_d$ be any polynomial. We need to show that $\sigma(f) \in V_d$ for all $\sigma \in G$. This is clear for $\sigma = \mathrm{Id}_{\mathbb{C}}$ since $\mathrm{Id}_{\mathbb{C}}(f) = f$, so we only need to check for $\sigma = \tau$. By definition, $\tau(f)$ is in V_d if and only if $\tau(f)(\alpha_i, \beta_i) = 0$ for all $(\alpha_i, \beta_i) \in S$. However,

$$\tau(f)(\alpha_i,\beta_i) = \overline{f}(\alpha_i,\beta_i) = \overline{f(\overline{\alpha_i},\overline{\beta_i})}.$$

Since S is stable under complex conjugation, $(\overline{\alpha_i}, \overline{\beta_i}) \in S$, and since f is in V_d , $f(\overline{\alpha_i}, \overline{\beta_i}) = 0$. Thus

$$\tau(f)(\alpha_i,\beta_i) = \overline{f(\overline{\alpha_i},\overline{\beta_i})} = \overline{0} = 0.$$

Since this holds for all $(\alpha_i, \beta_i) \in S$, we conclude that $\tau(f) \in V_d$, and hence that V_d is stable under the action of G.

Thus, by the descent lemma, V_d has a basis with coefficients in \mathbb{R} .

3. In this problem we will work out the Galois correspondence in the case $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ and $K = \mathbb{Q}$. Recall that from **H3** Q2(d) we know that $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ is a basis of L/K.

(a) Show that L/K is a Galois extension.

Let G = Gal(L/K). In this case it turns out that G is the Klein four-group, $G = \{e, \tau_1, \tau_2, \tau_1\tau_2\}$ where all elements except e have order 2, and τ_1 and τ_2 commute. The action of G on L may be deduced from the information :

- (b) Deduce the action of τ_1 , τ_2 on $\sqrt{6}$.
- (c) Deduce the action of τ_1 , τ_2 , and $\tau_1\tau_2$ on an arbitrary element $a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}$ of L (with $a, b, c, d \in \mathbb{Q}$).
- (d) Find all subgroups of G and write down the (reversed) lattice of subgroups of G
- (e) For each subgroup H of G, find the fixed field L^{H} .

SUGGESTION: To find the elements of L fixed by an element σ of G, start with a general element $\alpha = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}$ of L, write down the equation $\sigma(\alpha) = \alpha$, and consider it as a system of linear equations in the unknowns a, b, c, and d. Solutions to the equations are elements of L fixed by σ . (Here you will need to use your formula from (c) to see what $\sigma(\alpha)$ is.)

(f) Write down the lattice of intermediate fields of L/K.

Solution.

(a) The generators of L/\mathbb{Q} are $\sqrt{2}$, $\sqrt{3}$ with minimal polynomials $x^2 - 2$ and $x^2 - 3$ respectively. The roots of these polynomials are $\pm\sqrt{2}$ and $\pm\sqrt{3}$, all of which are in L. Thus L/\mathbb{Q} is a normal extension. Since we are in characteristic zero, L/\mathbb{Q} is automatically a separable extension, and so L/\mathbb{Q} is a Galois extension.

(b)
$$\tau_1(\sqrt{6}) = \tau_1(\sqrt{2} \cdot \sqrt{3}) = \tau_1(\sqrt{2}) \cdot \tau_1(\sqrt{3}) = (-\sqrt{2}) \cdot (\sqrt{3}) = -\sqrt{6}.$$

 $\tau_2(\sqrt{6}) = \tau_2(\sqrt{2} \cdot \sqrt{3}) = \tau_2(\sqrt{2}) \cdot \tau_2(\sqrt{3}) = (\sqrt{2}) \cdot (-\sqrt{3}) = -\sqrt{6}.$

(c) We have

$$\begin{aligned} \tau_1 \left(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} \right) &= a + b\tau_1(\sqrt{2}) + c\tau_1(\sqrt{3}) + d\tau_1(\sqrt{6}) = a - b\sqrt{2} + c\sqrt{3} - d\sqrt{6}. \\ \tau_2 \left(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} \right) &= a + b\tau_2(\sqrt{2}) + c\tau_2(\sqrt{3}) + d\tau_2(\sqrt{6}) = a + b\sqrt{2} - c\sqrt{3} - d\sqrt{6}. \\ \tau_1\tau_2 \left(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} \right) &= a + b\tau_1\tau_2(\sqrt{2}) + c\tau_1\tau_2(\sqrt{3}) + d\tau_1\tau_2(\sqrt{6}) = a - b\sqrt{2} - c\sqrt{3} + d\sqrt{6}. \end{aligned}$$

(d) Since G has order 4, any subgroup of G other than G and $\{e\}$ has order 2, and so corresponds to an element of order 2. The reversed lattice of subgroups is therefore

(e) To find the fixed field L^{H_i} for any of the subgroups H_i of order 2, it is enough to find the elements of L fixed under the generator of H_i . Using the formulae from (c), we have

 $a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} = \tau_1 \left(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}\right) = a - b\sqrt{2} + c\sqrt{3} - d\sqrt{6}$ only if b = -b and d = -d, i.e, b = d = 0 so that the element is of the form $a + c\sqrt{3}$ and so $L^{\{e,\tau_1\}} = \mathbb{Q}(\sqrt{3})$.

Similarly, we have

$$a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} = \tau_2 \left(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}\right) = a + b\sqrt{2} - c\sqrt{3} - d\sqrt{6}$$

if and only if $d = 0$ and $c = 0$, so that the element is of the form $a + b\sqrt{2}$, and

 $L^{\{e,\tau_2\}} = \mathbb{Q}(\sqrt{2}).$

Finally,

 $a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} = \tau_1\tau_2\left(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}\right) = a - b\sqrt{2} - c\sqrt{3} + d\sqrt{6}$ if and only if b = 0 and c = 0, so that the element is of the form $a + d\sqrt{6}$, and $L^{\{e,\tau_1\tau_2\}} = \mathbb{Q}(\sqrt{6})$.

(f) Thus the corresponding lattice of intermediate fields is

4. Let L/K be a Galois extension, G = Gal(L/K), and set d = |G| = [L : K]. Let $\sigma_1, \ldots, \sigma_d$ be the elements of G, and choose any basis $\alpha_1, \ldots, \alpha_d$ of L over K. Explain why the determinant

$$\begin{vmatrix} \sigma_1(\alpha_1) & \sigma_1(\alpha_2) & \sigma_1(\alpha_3) & \cdots & \sigma_1(\alpha_d) \\ \sigma_2(\alpha_1) & \sigma_2(\alpha_2) & \sigma_2(\alpha_3) & \cdots & \sigma_2(\alpha_d) \\ \sigma_3(\alpha_1) & \sigma_3(\alpha_2) & \sigma_3(\alpha_3) & \cdots & \sigma_3(\alpha_d) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sigma_d(\alpha_1) & \sigma_d(\alpha_2) & \sigma_d(\alpha_3) & \cdots & \sigma_d(\alpha_d) \end{vmatrix} \neq 0.$$

(SUGGESTION : Consider the matrix as giving a linear map $L^d \longrightarrow L^d$ and use part of the argument from the proof of Artin's lemma.)

Solution. Consider the map $L^d \longrightarrow L^d$ given by the matrix above, and let W be the kernel of this map. If the determinant of the matrix is zero, then $\dim_L(W) \ge 1$. In the proof of Artin's lemma we have seen that the kernel is stable under the action of G, and hence by the descent lemma, W has a basis consisting of elements whose coordinates are in K. Since $\dim_L(W) \ge 1$ there is at least one such basis element, say $w = (c_1, c_2, \ldots, c_d)$. I.e., we now have $(c_1, \ldots, c_d) \in W$ with the $c_i \in K$, and not all $c_i = 0$.

Since w is in the kernel of the matrix, for each j we have

$$\sigma_i(\alpha_1) \cdot c_1 + \sigma_i(\alpha_2) \cdot c_2 + \dots + \sigma_i(\alpha_d) \cdot c_d = 0.$$

One of the elements in the group is the identity. For that element the equation above becomes

$$c_1\alpha_1 + c_2\alpha_2 + \dots + c_d\alpha_d = 0,$$

with all the $c_i \in K$ and at least one nonzero. This contradicts the assumption that $\alpha_1, \ldots, \alpha_d$ are linearly independent over K.

The contradiction shows that the determinant above must be nonzero.