1. Suppose that K is a field of characteristic zero, and $p(x) \in K[x]$ an irreducible polynomial of degree d over K. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}$ be the roots of $p(x)$, and $L=$ $K\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ the field obtained by adjoining all the roots of $p(x)$.
Let S be the set $S=\left\{\alpha_{1}, \ldots, \alpha_{d}\right\}$ of the roots.
(a) If σ is an element of $\operatorname{Aut}(L / K)$ explain why, for any root $\alpha_{i} \in S, \sigma\left(\alpha_{i}\right) \in S$ too, so that the group $G=\operatorname{Aut}(L / K)$ acts on the set S.
(b) If $\sigma \in G$, and $\sigma\left(\alpha_{i}\right)=\alpha_{i}$ for $i=1, \ldots, d$, explain why σ is actually the identity map $\sigma: L \longrightarrow L$ on L.
(c) An action of a group G on a set S is the same as a homomorphism $G \longrightarrow \operatorname{Perm}(S)$ from G to the group of permutations of S. Explain why the action from part (a) gives an injective homomorphism.
(d) Explain why the group G acts transitively on S. [Hint: Lifting lemma!]
(e) Explain why G can be realized as a subgroup of S_{d}, the symmetric group on d elements, such that the subgroup acts transitively on the set $\{1, \ldots, d\}$.

Solution.

(a) We recall the following result (from the class on Wednesday, January 20th, the 8th class of the semester) which we have used frequently:

Lemma - Suppose that $K \subseteq L$ is an extension of fields, that α is an element of L algebraic over K, and let $q(x) \in K[x]$ be the minimal polynomial of α over K. Then for any $\sigma \in \operatorname{Aut}(L / K), \sigma(\alpha)$ is also a root of $q(x)$.

Let α_{i} be any root of $p(x)$. Let $q(x) \in K[x]$ be the minimal polynomial of α_{i} over K. Since $p\left(\alpha_{i}\right)=0$ we have that $q(x)$ divides $p(x)$. By the lemma, for any $\sigma \in \operatorname{Aut}(L / K)$, we have that $\sigma\left(\alpha_{i}\right)$ is a root of $q(x)$, and hence also a root of $p(x)$ since $q(x)$ divides $p(x)$. Therefore, $\sigma\left(\alpha_{i}\right)$ is also in S.

Remarks. (1) The argument above shows that the lemma implies something apparently stronger : that if $p(x) \in K[x]$ is any polynomial with α as a root, and $\sigma \in \operatorname{Aut}(L / K)$ then $\sigma(\alpha)$ is a root of $p(x)$. (2) We didn't actually need this extension in the problem. Since $p(x)$ is irreducible over K, and divisible by the nonconstant polynomial $q(x)$, we must have $p(x)=c q(x)$ where $c \in K$ is the leading coefficient of $p(x)$ (and so equal to 1 if $p(x)$ is also monic). I.e, $p(x)$ is, up to scaling to make it monic, the minimal polynomial of α_{i} (and since α_{i} was arbitrary, it is the minimal polynomial of any of its other roots as well).
(b) Since $L=K\left(\alpha_{1}, \ldots, \alpha_{d}\right)$, we have that L is generated over K by $\alpha_{1}, \ldots, \alpha_{d}$, each of which is algebraic over K. By our theorem on simple extensions and the proof of the tower law, this means that every element of $\gamma \in L$ can be written as a finite sum

$$
\gamma=\sum c_{m_{1}, m_{2}, \ldots, m_{d}} \alpha_{1}^{m_{1}} \alpha_{2}^{m_{2}} \cdots \alpha_{d}^{m_{d}}
$$

with the coefficients $c_{m_{1}, \ldots, m_{d}} \in K$. Thus for any $\sigma \in \operatorname{Aut}(L / K)$ we have

$$
\begin{aligned}
\sigma(\gamma) & =\sum \sigma\left(c_{m_{1}, m_{2}, \ldots, m_{d}}\right) \sigma\left(\alpha_{1}\right)^{m_{1}} \sigma\left(\alpha_{2}^{m_{2}}\right) \cdots \sigma\left(\alpha_{d}\right)^{m_{d}} \\
& =\sum c_{m_{1}, m_{2}, \ldots, m_{d}} \sigma\left(\alpha_{1}\right)^{m_{1}} \sigma\left(\alpha_{2}^{m_{2}}\right) \cdots \sigma\left(\alpha_{d}\right)^{m_{d}} .
\end{aligned}
$$

Where the last equality is because σ fixes K. If, in addition, $\sigma\left(\alpha_{i}\right)=\alpha_{i}$ for $i=1, \ldots, d$, then this becomes

$$
\begin{aligned}
\sigma(\gamma) & =\sum c_{m_{1}, m_{2}, \ldots, m_{d}} \sigma\left(\alpha_{1}\right)^{m_{1}} \sigma\left(\alpha_{2}^{m_{2}}\right) \cdots \sigma\left(\alpha_{d}\right)^{m_{d}} \\
& =\sum c_{m_{1}, m_{2}, \ldots, m_{d}} \alpha_{1}^{m_{1}} \alpha_{2}^{m_{2}} \cdots \alpha_{d}^{m_{d}}=\gamma,
\end{aligned}
$$

in other words, $\sigma(\gamma)=\gamma$. Since γ was an arbitrary element of L, we conclude that σ fixes all of L, so that $\sigma=\operatorname{Id}_{L}$.

Remark. This question is asking about a principle (and the argument behind it) that we have used several times : if L is generated over K by a set S, and if $\sigma \in \operatorname{Aut}(L / K)$ fixes all the elements in S, then σ must fix all of L, and hence $\sigma=\operatorname{Id}_{L}$.
(c) The kernel of the homomorphism $\varphi: G \longrightarrow \operatorname{Perm}(G)$ consists of those automorphism which permute S trivially, i.e, those $\sigma \in G$ such that $\sigma\left(\alpha_{i}\right)=\alpha_{i}$ for all $\alpha_{i} \in S$. By part (b) the only such $\sigma \in G$ is $\sigma=\operatorname{Id}_{L}$, which is the identity of G. Therefore $\operatorname{ker} \varphi=\left\{\operatorname{Id}_{L}\right\}$, and so φ is injective.
(d) Let α_{i} and α_{j} be any two roots. As noted above, $p(x)$ is irreducible and (up to scaling to make it monic) is the minimal polynomial of both α_{i} and α_{j}. By the theorem on simple extensions we therefore have an isomorphism

$$
\varphi: K\left(\alpha_{i}\right) \cong \frac{K[x]}{(p(x))} \cong K\left(\alpha_{j}\right)
$$

which takes α_{i} to α_{j} and acts as the identity on K. We lift this automorphism to a map $\sigma: L \longrightarrow L$ by using the lifting lemma.

We need to check that the hypothesis of the lifting lemma is satisfied. Since L is generated over K by $\alpha_{1}, \ldots, \alpha_{d}$, it

$$
K\left(\alpha_{i}\right) \xrightarrow[\varphi]{\sim} K\left(\alpha_{j}\right)
$$ is certainly true that $\alpha_{1}, \ldots, \alpha_{d}$ generate L over the larger field $K\left(\alpha_{i}\right)$. Pick α_{ℓ},

and let $q_{\ell}(x) \in K\left(\alpha_{i}\right)$ be the minimal polynomial of α_{ℓ} over $K\left(\alpha_{i}\right)$. Since α_{ℓ} is also root of $p(x)$, we have $q_{\ell}(x) \mid p(x)$. Therefore $\varphi\left(q_{\ell}(x)\right)$ divides $\varphi(p(x))=p(x)$. (The equality $\varphi(p(x))=p(x)$ follows since all coefficients of $p(x)$ are in K, and φ fixes K.) Since $p(x)$ splits completely in $L, \varphi\left(q_{\ell}(x)\right)$ also must split completely in L and so the hypothesis of the lifting lemma is satisfied.

Thus by the lifting lemma there exists $\sigma: L \longrightarrow L$ lifting φ. The map ψ must be an isomorphism since it is an injective map between K vector spaces of the same dimension. Thus σ is an automorphism of L, and $\sigma\left(\alpha_{i}\right)=\alpha_{j}$. Since α_{i} and α_{j} were arbitrary, this shows that G acts transitively on S.

Remarks. (1) This argument, using the lifting lemma to find an automorphism which takes one root of an irreducible polynomial to another, is also one which we have been using when studying Galois groups in particular examples. (2) As part of this argument, we have verified something which has previously been passed over in silence : when using the inductive part of the lifting lemma, how do we know that the new larger field still satisfies the hypothesis of the lifting lemma? The argument here shows how to use the fact that the new minimal polynomial in the larger field will have to divide the old minimal polynomial from the smaller field, and the fact that the hypothesis held for the smaller field, to deduce that the hypothesis holds for the larger field.
(e) By picking a bijection of $\alpha_{1}, \ldots, \alpha_{d}$ (for instance, $\alpha_{i} \leftrightarrow i$) we obtain an isomorphism of $\operatorname{Perm}(S)$ with S_{d}. Combining this with the homomorphism $G \longrightarrow \operatorname{Perm}(S)$ from the action of G on S, we get a homomorphism $G \longrightarrow S_{d}$. By part (c) this homomorphism is injective. By part (d) G acts transitively on S and hence its image in S_{d} acts transitively on $\{1, \ldots, d\}$.

Remark. In trying to identify and understand Galois groups, one of our tools has been looking for ways to represent the group concretely. For instance, each $\sigma \in \operatorname{Gal}(L / K)$ is a K-linear transformation, so we could write down the matrix associated to σ. On the other hand, when studying extensions like $\mathbb{Q}(\sqrt[3]{2}, \omega) / \mathbb{Q}$ and $\mathbb{Q}\left(5^{\frac{1}{4}}, i\right) / \mathbb{Q}$ it was convenient to understand G by studying how G permuted the generators and the other roots of their minimal polynomials. This problem is applying that idea to the case that L / K is generated by the roots of a single irreducible polynomial. Then we know that G can be realized as a transitive subgroup of S_{d}, a result we will use in developing algorithms for finding Galois groups.
2. Let $K=\mathbb{Q}$, and $\zeta=e^{2 \pi i / 7}$. By H3 Q1, the minimal polynomial of ζ over \mathbb{Q} is $q(x)=x^{6}+x^{5}+x^{5}+x^{3}+x^{2}+x+1=\frac{x^{7}-1}{x-1}$.
(a) Show that all other roots of $q(x)$ are powers of ζ, and explain why this shows that $L=\mathbb{Q}(\zeta)$ is the splitting field for $q(x)$.
(b) Let $G=\operatorname{Gal}(L / \mathbb{Q})$. For $\sigma \in G$, explain why σ is completely determined by what it does to ζ. (i.e., once you know what $\sigma(\zeta)$ is, you know how σ acts on all of L.)
(c) Compute the Galois group $G=\operatorname{Gal}(L / \mathbb{Q})$. (Keeping in mind part (b) of this question, and part (d) of question 1 may help, but don't get hung up on it if it doesn't.)
(d) Describe the subgroups of G, and draw the corresponding diagram of intermediate fields between \mathbb{Q} and L.
(e) Compute the Galois groups for the extensions $\mathbb{Q}\left(\cos \left(\frac{2 \pi}{7}\right)\right) / \mathbb{Q}$ and $\mathbb{Q}\left(i \sin \left(\frac{2 \pi}{7}\right)\right) / \mathbb{Q}$, where $i=\sqrt{-1}$. (Note: These are subfields of L.)

Solution.

(a) For any $m \in \mathbb{Z}$, we have $\left(\zeta^{m}\right)^{7}=\left(e^{2 m \pi i / 7}\right)^{7}=e^{2 m \pi i}=1$, that is, all powers of ζ satisfy the equation $x^{7}-1=0$. For $m=1, \ldots, 6$ these powers are distinct, and not equal to 1 .

In fact, as we know, the powers $\zeta^{m}, m=0, \ldots, 6$ are all of the 7 -th roots of unity, distributed in a 7 -gon (i.e, a heptagon) with one of the vertices at $1 \in \mathbb{C}$.

Since the $\zeta^{m}, m=1, \ldots, 6$ are not equal to 1 , they are roots of $\frac{x^{7}-1}{x-1}=q(x)$. Since $q(x)$ has degree 6 , the elements $\zeta^{1}, \ldots, \zeta^{6}$ are all the roots of $q(x)$.

Thus $\mathbb{Q}(\zeta)=\mathbb{Q}\left(\zeta^{1}, \zeta^{2}, \ldots, \zeta^{6}\right)$ is generated by the roots of $q(x)$, and so is the splitting field for $q(x)$ over \mathbb{Q}.
(b) Since ζ generates L over \mathbb{Q}, once we know what $\sigma \in \operatorname{Gal}(L / \mathbb{Q})$ does to ζ, we can deduce what σ does to any element of L. Specifically, since $q(x)$ has degree 6 , we know that $1, \zeta, \zeta^{2}, \ldots, \zeta^{5}$ is a basis for L over \mathbb{Q}, so that any $\gamma \in L$ can be written $\gamma=c_{0} \cdot 1+c_{1} \zeta+c_{2} \zeta^{2}+\cdots c_{5} \zeta^{5}$ with $c_{0}, \ldots, c_{5} \in \mathbb{Q}$. Then $\sigma(\gamma)=c_{0} \cdot 1+c_{1} \sigma(\zeta)+\cdots+c_{5} \sigma(\zeta)^{5}$, i.e, what σ does to ζ completely determines what σ does to any other element of L.
(c) By part (b), to understand $G=\operatorname{Gal}(L / \mathbb{Q})$ we only need to pay attention to what σ does to ζ. By Q1(d), for each $m, m=1, \ldots, 6$, there is a $\sigma_{m} \in G$ such that $\sigma_{m}(\zeta)=\zeta^{m}$. Since these elements do different things to ζ, they must all be distinct, and so we have 6 different elements of G. Since $|G|=[L: \mathbb{Q}]=\operatorname{deg} q(x)=6$, these are all the elements of G.

For reference, here is what each of the σ_{m} to do the powers ζ, \ldots, ζ^{6} of ζ :
In making the table we used the rule that $\zeta^{m}=\zeta^{m^{\prime}}$ if $m \equiv m^{\prime}(\bmod 7)$.

Now which group is G ? Let us try and figure out the rule of composition. For any m and n, we have $\sigma_{m}\left(\sigma_{n}(\zeta)\right)=\sigma_{m}\left(\zeta^{n}\right)=\zeta^{m n}$. Let r be the element of $\{1, \ldots, 6\}$ which is congruent to $m n \bmod 7$. We then have

	ζ	ζ^{2}	ζ^{3}	ζ^{4}	ζ^{5}	ζ^{6}
σ_{1}	ζ	ζ^{2}	ζ^{3}	ζ^{4}	ζ^{5}	ζ^{6}
σ_{2}	ζ^{2}	ζ^{4}	ζ^{6}	ζ	ζ^{3}	ζ^{5}
σ_{3}	ζ^{3}	ζ^{6}	ζ^{2}	ζ^{5}	ζ	ζ^{4}
σ_{4}	ζ^{4}	ζ	ζ^{5}	ζ^{2}	ζ^{6}	ζ^{3}
σ_{5}	ζ^{5}	ζ^{3}	ζ	ζ^{6}	ζ^{4}	ζ^{2}
σ_{6}	ζ^{6}	ζ^{5}	ζ^{4}	ζ^{3}	ζ^{2}	ζ

$$
\sigma_{m}\left(\sigma_{n}(\zeta)\right)=\zeta^{m n}=\zeta^{r}=\sigma_{r}(\zeta)
$$

Since any element of G is completely determined by what it does to ζ, this tells us we must have $\sigma_{m} \sigma_{n}=\sigma_{r}$. Thus the law of composition in G is

$$
\sigma_{m} \sigma_{n}=\sigma_{m n \bmod 7}
$$

From this we can write down the multiplication table for the group :

\circ	$\boldsymbol{\sigma}_{\mathbf{1}}$	$\boldsymbol{\sigma}_{\mathbf{2}}$	$\boldsymbol{\sigma}_{\mathbf{3}}$	$\boldsymbol{\sigma}_{4}$	$\boldsymbol{\sigma}_{\mathbf{5}}$	$\boldsymbol{\sigma}_{\mathbf{6}}$
$\boldsymbol{\sigma}_{\mathbf{1}}$	σ_{1}	σ_{2}	σ_{3}	σ_{4}	σ_{5}	σ_{6}
$\boldsymbol{\sigma}_{2}$	σ_{2}	σ_{4}	σ_{6}	σ_{1}	σ_{3}	σ_{5}
$\boldsymbol{\sigma}_{\mathbf{3}}$	σ_{3}	σ_{6}	σ_{2}	σ_{5}	σ_{1}	σ_{4}
$\boldsymbol{\sigma}_{4}$	σ_{4}	σ_{1}	σ_{5}	σ_{2}	σ_{6}	σ_{3}
$\boldsymbol{\sigma}_{\mathbf{5}}$	σ_{5}	σ_{3}	σ_{1}	σ_{6}	σ_{4}	σ_{2}
$\boldsymbol{\sigma}_{\mathbf{6}}$	σ_{6}	σ_{5}	σ_{4}	σ_{3}	σ_{2}	σ_{1}

A cyclic group of order 6 has two generators. In this case, σ_{3} and σ_{5} are generators (i.e., have order 6). The elements of order 3 are σ_{2} and σ_{4}, the element of order 2 is σ_{6}, and the identity is σ_{1}.
(d) A cyclic group of order 6 has proper subgroups of orders 2 and 3. By looking at the orders of the elements from (c), we see that the subgroups are $\left\{\sigma_{1}, \sigma_{5}\right\}$ and $\left\{\sigma_{1}, \sigma_{2}, \sigma_{4}\right\}$. Here are the lattices of subgroups and intermediate fields.
(Reversed) lattice of subgroups

Lattice of intermediate fields

Let us now check that these intermediate fields are correct. Set $H_{1}=\left\{\sigma_{1}, \sigma_{5}\right\}$. From the table we see that σ_{5} exchanges ζ and ζ^{6}, ζ^{2} and ζ^{5}, ζ^{3} and ζ^{4}. (in fact, since $\zeta^{6}=\zeta^{-1}=\bar{\zeta}$, we see that σ_{6} is the restriction of complex conjugation to $\mathbb{Q}(\zeta))$. Using the formula $\zeta^{6}=-\left(\zeta^{5}+\zeta^{4}+\cdots+\zeta+1\right)$ (deduced from $\left.p(\zeta)=0\right)$, we see that the action of σ_{5} on an element $\gamma=c_{0}+\cdots+c_{5} \zeta^{5} \in \mathbb{Q}(\zeta)$ is :

$$
\begin{aligned}
c_{0}+c_{1} \zeta+c_{2} \zeta^{2}+c_{3} \zeta^{3}+ & c_{4} \zeta^{4}+c_{5} \zeta^{5} \xrightarrow{\sigma_{6}} \\
& \left(c_{0}-c_{1}\right)-c_{1} \zeta+\left(c_{5}-c_{1}\right) \zeta^{2}+\left(c_{4}-c_{1}\right) \zeta^{3}+\left(c_{3}-c_{1}\right) \zeta^{4}+\left(c_{2}-c_{1}\right) \zeta^{5} .
\end{aligned}
$$

Comparing coefficients gives the equations

$$
\begin{aligned}
& c_{0}=c_{0}-c_{1} ; \quad c_{1}=-c_{1} ; \quad c_{2}=c_{5}-c_{1} ; \\
& c_{3}=c_{4}-c_{1} ; \quad c_{4}=c_{3}-c_{1} ; \quad c_{5}=c_{2}-c_{1} .
\end{aligned}
$$

These equations reduce to $c_{1}=0, c_{2}=c_{5}$ and $c_{3}=c_{4}$, showing us that a basis for $L^{H_{1}}$ over \mathbb{Q} is $1, \zeta^{2}+\zeta^{5}$, and $\zeta^{3}+\zeta^{4}$. Since $\left(\zeta^{2}+\zeta^{5}\right)^{2}-2=\left(\zeta^{4}+2 \zeta^{7}+\zeta^{10}\right)-2=$ $\zeta^{3}+\zeta^{4}$, we see that $\zeta^{2}+\zeta^{5}$ generates $L^{H_{1}}$ over \mathbb{Q}. Therefore $L^{H_{1}}=\mathbb{Q}\left(\zeta^{2}+\zeta^{5}\right)$.

There are other possible generators for this field which are useful to know. For instance, $\zeta+\zeta^{6}$ is an element of $L^{H_{1}}$. Using the relation for ζ^{6} above, we have $\zeta+\zeta^{6}=1-\left(\zeta^{2}+\zeta^{5}\right)-\left(\zeta^{3}+\zeta^{4}\right) \in L^{H_{1}}$. Since $\left(\zeta+\zeta^{6}\right)^{2}-2=\zeta^{2}+\zeta^{5}$, we see that $\zeta+\zeta^{6}$ also generates $L^{H_{1}}$ over \mathbb{Q}, i.e., $L^{H_{1}}=\mathbb{Q}\left(\zeta+\zeta^{6}\right)$. Since this description will be useful for question (e) below, this is the description used in the lattice above. Finally, $\left(\zeta^{3}+\zeta^{4}\right)^{2}-2=\zeta+\zeta^{6}$, so $\zeta^{3}+\zeta^{4}$ is another generator of $L^{H_{1}}$.

Now let $H_{2}=\left\{\sigma_{1}, \sigma_{2}, \sigma_{4}\right\}$. Being fixed by H_{2} is the same as being fixed by σ_{2}, which generates H_{2}. Acting on the powers of ζ, σ_{2} cycles them in groups of 3: $\zeta \mapsto \zeta^{2} \mapsto \zeta^{4} \mapsto \zeta$ and $\zeta^{3} \mapsto \zeta^{6} \mapsto \zeta^{5} \mapsto \zeta^{3}$. Once again using the relation for ζ^{6}, this means that σ_{2} has the following effect on a general $\gamma \in L$:

$$
\begin{aligned}
c_{0}+c_{1} \zeta+c_{2} \zeta^{2}+c_{3} \zeta^{3}+c_{4} \zeta^{4}+ & c_{5} \zeta^{5} \xrightarrow{\sigma_{2}} \\
& \left(c_{0}-c_{3}\right)+c_{4} \zeta+c_{1} \zeta^{2}+\left(c_{5}-c_{3}\right) \zeta^{3}+c_{2} \zeta^{4}-c_{3} \zeta^{5} .
\end{aligned}
$$

Comparing coefficients gives the equations

$$
\begin{aligned}
& c_{0}=c_{0}-c_{3} ; \quad c_{1}=c_{4} ; c_{2}=c_{1} ; \\
& c_{3}=c_{5}-c_{3} ; c_{4}=c_{2} ; \quad c_{5}=-c_{3} .
\end{aligned}
$$

These equations reduce to : $c_{1}=c_{2}=c_{4}, c_{3}=c_{5}=0$, showing us that a basis for $L^{H_{2}}$ over \mathbb{Q} is $1, \zeta+\zeta^{2}+\zeta^{4}$. In particular we have $\mathrm{L}^{H_{2}}=\mathbb{Q}\left(\zeta+\zeta^{2}+\zeta^{4}\right)$.

We can try and simplify this expression. Let $\gamma=\zeta+\zeta^{2}+\zeta^{4}$. Then $\gamma^{2}=$ $\zeta+\zeta^{2}+2 \zeta^{3}+\zeta^{4}+2 \zeta^{5}+2 \zeta^{6}=2\left(\zeta+\zeta^{2}+\zeta^{3}+\zeta^{4}+\zeta^{5}+\zeta^{6}\right)-\gamma=2(-1)-\gamma=-\gamma-2$. Therefore $\gamma^{2}+\gamma+2=0$, and γ is a root of $p(x)=x^{2}+x+2$. By the quadratic formula, the roots of $p(x)$ are $\frac{1}{2}(-1 \pm \sqrt{-7})$. Therefore, $L^{H_{2}}$ is also the field $\mathbb{Q}(\sqrt{-7})=\mathbb{Q}(\sqrt{7} i)$.

Remark. Some of the computations above could have been simplified slightly with a choice of a different basis for L over \mathbb{Q}. Using the relation for ζ^{6}, the elements $\zeta, \zeta^{2}, \zeta^{3}$, ζ^{4}, ζ^{5}, and ζ^{6} are a basis for L over \mathbb{Q}. The advantage of this basis is that G permutes the elements, so it is easy to find fixed elements - they correspond to sums of basis elements in orbits of the subgroup. For instance the action of σ_{6} in this basis is

$$
\begin{aligned}
& c_{1} \zeta+c_{2} \zeta^{2}+c_{3} \zeta^{3}+c_{4} \zeta^{4}+c_{5} \zeta^{5}+c_{6} \zeta^{6} \xrightarrow{\sigma_{6}} \\
& c_{6} \zeta+c_{5} \zeta^{2}+c_{4} \zeta^{3}+c_{3} \zeta^{4}+c_{2} \zeta^{5}+c_{1} \zeta^{6},
\end{aligned}
$$

from which it is clear that $\zeta+\zeta^{6}, \zeta^{2}+\zeta^{5}$, and $\zeta^{3}+\zeta^{4}$ are a basis of $L^{H_{1}}$ over \mathbb{Q}. Similarly the action of σ_{2} in this basis is

$$
\begin{aligned}
c_{1} \zeta+c_{2} \zeta^{2}+c_{3} \zeta^{3}+c_{4} \zeta^{4}+c_{5} \zeta^{5}+c_{6} \zeta^{6} \xrightarrow{\sigma_{6}} \\
c_{4} \zeta+c_{1} \zeta^{2}+c_{5} \zeta^{3}+c_{2} \zeta^{4}+c_{6} \zeta^{5}+c_{3} \zeta^{6}
\end{aligned}
$$

from which we see that $\zeta+\zeta^{2}+\zeta^{4}$ and $\zeta^{3}+\zeta^{5}+\zeta^{6}$ are a basis for $L^{H_{2}}$ over \mathbb{Q}.
(e) From complex analysis we have the identities $\cos (\theta)=\frac{e^{i \theta}+e^{-i \theta}}{2}$ and $\sin (\theta)=$ $\frac{e^{i \theta}-e^{-i \theta}}{2 i}$. With $\theta=\frac{2 \pi}{7}$, this gives

$$
\cos \left(\frac{2 \pi}{7}\right)=\frac{e^{\frac{2 \pi i}{7}}+e^{-\frac{2 \pi i}{7}}}{2}=\frac{\zeta+\zeta^{-1}}{2}=\frac{\zeta+\zeta^{6}}{2}
$$

and

$$
i \sin \left(\frac{2 \pi}{7}\right)=i\left(\frac{e^{\frac{2 \pi i}{7}}-e^{-\frac{2 \pi i}{7}}}{2 i}\right)=\frac{\zeta-\zeta^{-1}}{2}=\frac{\zeta-\zeta^{6}}{2} .
$$

Therefore $\mathbb{Q}\left(\cos \left(\frac{2 \pi}{7}\right)\right)=\mathbb{Q}\left(\zeta+\zeta^{6}\right)$ and $\mathbb{Q}\left(i \sin \left(\frac{2 \pi}{7}\right)\right)=\mathbb{Q}\left(\zeta-\zeta^{6}\right)$.

From the Galois correspondence in $(\mathrm{d}), \mathbb{Q}\left(\zeta+\zeta^{6}\right)$ is the intermediate field corresponding to H_{1} (a normal subgroup, since G is abelian), and hence the Galois group of $\mathbb{Q}\left(\cos \left(\frac{2 \pi}{7}\right)\right) / \mathbb{Q}$ is G / H_{1}, the cyclic group of order 3 .

Which intermediate field is $M=\mathbb{Q}\left(i \sin \left(\frac{2 \pi}{7}\right)\right)=\mathbb{Q}\left(\zeta-\zeta^{6}\right)$? Perhaps the easiest way to see, which also would have worked for $\mathbb{Q}\left(\cos \left(\frac{2 \pi}{7}\right)\right)$, is to ask which subgroups of L fix this field, and use the Galois correspondence. Since $\sigma_{6}\left(\zeta-\zeta^{6}\right)=\zeta^{6}-\zeta=$ $-\left(\zeta-\zeta^{6}\right)$, we see that M is not fixed by H_{1}. Since $\sigma_{2}\left(\zeta-\zeta_{6}\right)=\zeta^{2}-\zeta^{5} \neq \zeta-\zeta^{6}$, we see that M is also not fixed by H_{2}. (And so M also cannot be fixed by G, which contains both.) Therefore, in the lattice of subgroups, the only subgroup left to fix M is $\left\{\sigma_{1}\right\}$. The subgroup $\left\{\sigma_{1}\right\}$ corresponds to the field L, so $\mathbb{Q}\left(\sin \left(\frac{2 \pi}{7}\right)\right)=$ $L=\mathbb{Q}(\zeta)$.

In the next two problems we will explore some further aspects of the Galois correspondence.
3. Recall that a group G is a product $G=H_{1} \times H_{2}$ if and only if there are normal subgroups $H_{1} \subset G$ and $H_{2} \subset G$ such that $H_{1} \cap H_{2}=\{e\}$ and $H_{1} \cdot H_{2}$ (the subgroup generated by H_{1} and H_{2}) is equal to G.

Suppose that $K \subseteq L$ is a finite Galois extension, and M_{1} and M_{2} are two intermediate fields such that:

1. Both $K \subseteq M_{1}$ and $K \subseteq M_{2}$ are Galois extensions.
2. $M_{1} \cap M_{2}=K$.
3. The smallest subfield of L containing both M_{1} and M_{2} is L itself.
(a) If H_{1} and H_{2} are the subgroups of $G=\operatorname{Aut}(L / K)$ corresponding to M_{1} and M_{2} under the Galois correspondence, show that $G=H_{1} \times H_{2}$.
(b) Conversely, if the Galois group G is a product $G=H_{1} \times H_{2}$, then show that there are two intermediate fields M_{1} and M_{2} having properties (1)-(3) above.
(c) Consider again the extension $\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}$ and its intermediate fields $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$. Use (a) to find the Galois group $\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}$. (This justifies the claim about this Galois group from H6 Q3.)

Solution.

Let L / K be a Galois extension with Galois group G, M_{1} and M_{2} intermediate fields corresponding to subgroups H_{1} and H_{2} By the Galois correspondence, we have the following equivalencies :

1. M_{i} / K is a Galois extension if and only if H_{i} is a normal subgroup of K
2. $\quad \min \left(M_{1}, M_{2}\right)=M_{1} \cap M_{2}=K \quad$ if and only if $\quad \max \left(H_{1}, H_{2}\right)=\left\langle H_{1}, H_{2}\right\rangle=G$
3. $\max \left(M_{1}, M_{2}\right)=\left\langle M_{1}, M_{2}\right\rangle=L \quad$ if and only if $\min \left(H_{1}, H_{2}\right)=H_{1} \cap H_{2}=\{e\}$

In items 2 and 3 we have used the definitions of max and min in the lattices of intermediate fields and subgroups respectively. That is, in the lattice of subgroups, $\min \left(H_{1}, H_{2}\right)=H_{1} \cap H_{2}$ and $\max \left(H_{1}, H_{2}\right)=\left\langle H_{1}, H_{2}\right\rangle$, the subgroup generated by H_{1} and H_{2}. In the lattice of intermediate fields we have $\min \left(M_{1}, M_{2}\right)=M_{1} \cap M_{2}$ and $\max \left(M_{1}, M_{2}\right)=\left\langle M_{1}, M_{2}\right\rangle$, i.e., the field generated by M_{1} and M_{2}, or the smallest intermediate field containing M_{1} and M_{2}. In 2 and 3 the equivalencies follow since, being an order-reversing bijection of lattices, the Galois correspondence switches the max and min.
(a) By the above equivalencies, the conditions stated are equivalent to the conditions that H_{1} and H_{2} are normal subgroups of G, that $H_{1} \cap H_{2}=\{e\}$, and that H_{1} and H_{2} generate G. In turn, this is equivalent to the statement that $G=H_{1} \times H_{2}$.
(b) On the other hand, if $G=H_{1} \times H_{2}$ then we have normal subgroups H_{1} and H_{2} which generate G and such that $H_{1} \cap H_{2}=\{e\}$. By the equivalencies above, the corresponding intermediate fields M_{1} and M_{2} satisfy $M_{1} \cap M_{2}=K, L$ is the smallest subfield containing M_{1} and M_{2}, and that both M_{1} / K and M_{2} / K are Galois extensions.
(c) Let $L=\mathbb{Q}(\sqrt{2}, \sqrt{3})$, with intermediate fields $M_{2}=\mathbb{Q}(\sqrt{2}), M_{1}=\mathbb{Q}(\sqrt{3})$ over $K=\mathbb{Q}$. The smallest field containing M_{1} and M_{2} will have to contain $\sqrt{2}, \sqrt{3}$, and \mathbb{Q}, and so contain $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Conversely, $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ contains both M_{1} and M_{2}, so L is the smallest field containing M_{1} and M_{2}. Both M_{1} / \mathbb{Q} and M_{2} / \mathbb{Q} are degree 2 extensions, and hence Galois extensions (in characteristic $\neq 2$). Finally, we have checked several times that $M_{1} \cap M_{2}=\mathbb{Q}$. For instance, if $M_{1} \cap M_{2} \neq \mathbb{Q}$, then $M_{1} \cap M_{2}$ is a subfield of each of M_{1} and M_{2} larger than \mathbb{Q}, and so for degree reasons we would have to have $M_{1}=M_{1} \cap M_{2}=M_{2}$. But we have shown in H1 Q3 (c) that $\mathbb{Q}(\sqrt{2}) \neq \mathbb{Q}(\sqrt{3})$.

Therefore, M_{1} and M_{2} satisfy the conditions above. Setting $H_{1}=\operatorname{Gal}(\mathbb{Q}(\sqrt{3}) / \mathbb{Q}) \cong$ $\mathbb{Z} / 2 \mathbb{Z}$ and $H_{2}=\operatorname{Gal}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q}) \cong \mathbb{Z} / 2 \mathbb{Z}$, we therefore have that $G=\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q})=$ $H_{1} \times H_{2}$.

The composition $H_{1} \hookrightarrow G \longrightarrow G / H_{2}$ is an isomorphism, and $G / H_{2}=\operatorname{Gal}\left(M_{2} / \mathbb{Q}\right)$. Let σ_{1} be the generator of $\operatorname{Gal}\left(M_{2} / \mathbb{Q}\right)$ (so that $\left.\sigma_{1}(\sqrt{2})=-\sqrt{2}\right)$, also use the name
σ_{1} for the corresponding element of H_{1} under the isomorphism. Similarly, we let σ_{2} be the generator of $H_{2} \cong G / H_{1} \cong \operatorname{Gal}\left(M_{1} / \mathbb{Q}\right)$ (so that $\left.\sigma_{2}(\sqrt{3})=-\sqrt{3}\right)$. We then have that the elements of G are :

$$
\begin{aligned}
e & =\left(e_{1}, e_{2}\right), \\
\tau_{1} & =\left(\sigma_{1}, e_{2}\right), \\
\tau_{2} & =\left(e_{1}, \sigma_{2}\right), \\
\tau_{1} \tau_{2} & =\left(\sigma_{1}, \sigma_{2}\right),
\end{aligned}
$$

exactly as claimed in H6 Q3. Note that, since H_{1} fixes M_{1} and H_{2} fixes M_{2}, we also know that $\tau_{1}(\sqrt{3})=\sqrt{3}$ and $\tau_{2}(\sqrt{2})=\sqrt{2}$.
4. Suppose that L / K is a Galois extension with Galois group G, and let $M_{1} \subseteq M_{2}$ be intermediate fields, corresponding to subgroups H_{1} and H_{2} of G.
(a) What condition on H_{1} and H_{2} is equivalent to the condition that " M_{2} / M_{1} is a Galois extension"?
(b) Given that this condition on groups holds, what is $\operatorname{Gal}\left(M_{2} / M_{1}\right)$, i.e., how do you compute $\operatorname{Gal}\left(M_{2} / M_{1}\right)$ from H_{1} and H_{2} ?

Solution.

(a) Since $M_{1} \subset M_{2}$ we have $H_{2} \subset H_{1}$ be the Galois correspondence. In fact, restricting the intermediate fields to those intermediate fields containing M_{1}, we have that L / M_{1} is a Galois extension with Galois group H_{1}, and the intermediate field $M_{1} \subseteq M_{2} \subseteq L$ corresponds to the subgroup H_{1}. By the Galois correspondence, M_{2} / M_{1} is a Galois extension if and only if H_{2} is a normal subgroup of H_{1}.
(b) If M_{2} / M_{1} is a Galois extension (so that H_{2} is a normal subgroup of H_{1}), then by the Galois correspondence $\operatorname{Gal}\left(M_{2} / M_{1}\right)=H_{1} / H_{2}$.

