
Math 414 Answers for Homework 7

1. Suppose that K is a field of characteristic zero, and p(x) ∈ K[x] an irreducible
polynomial of degree d over K. Let α1, α2, . . . , αd be the roots of p(x), and L =
K(α1, . . . , αd) the field obtained by adjoining all the roots of p(x).

Let S be the set S = {α1, . . . , αd} of the roots.

(a) If σ is an element of Aut(L/K) explain why, for any root αi ∈ S, σ(αi) ∈ S too,
so that the group G = Aut(L/K) acts on the set S.

(b) If σ ∈ G, and σ(αi) = αi for i = 1, . . . , d, explain why σ is actually the identity
map σ : L −→ L on L.

(c) An action of a group G on a set S is the same as a homomorphism G −→ Perm(S)
from G to the group of permutations of S. Explain why the action from part (a)
gives an injective homomorphism.

(d) Explain why the group G acts transitively on S. [Hint: Lifting lemma!]

(e) Explain why G can be realized as a subgroup of Sd, the symmetric group on d
elements, such that the subgroup acts transitively on the set {1, . . . , d}.

Solution.

(a) We recall the following result (from the class on Wednesday, January 20th, the
8th class of the semester) which we have used frequently:

Lemma — Suppose that K ⊆ L is an extension of fields, that α is an element of

L algebraic over K, and let q(x) ∈ K[x] be the minimal polynomial of α over K.

Then for any σ ∈ Aut(L/K), σ(α) is also a root of q(x).

Let αi be any root of p(x). Let q(x) ∈ K[x] be the minimal polynomial of αi

over K. Since p(αi) = 0 we have that q(x) divides p(x). By the lemma, for any
σ ∈ Aut(L/K), we have that σ(αi) is a root of q(x), and hence also a root of p(x)
since q(x) divides p(x). Therefore, σ(αi) is also in S.

Remarks. () The argument above shows that the lemma implies something apparently
stronger : that if p(x) ∈ K[x] is any polynomial with α as a root, and σ ∈ Aut(L/K)
then σ(α) is a root of p(x). () We didn’t actually need this extension in the problem.
Since p(x) is irreducible over K, and divisible by the nonconstant polynomial q(x), we
must have p(x) = cq(x) where c ∈ K is the leading coefficient of p(x) (and so equal
to 1 if p(x) is also monic). I.e, p(x) is, up to scaling to make it monic, the minimal
polynomial of αi (and since αi was arbitrary, it is the minimal polynomial of any of its
other roots as well).
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(b) Since L = K(α1, . . . , αd), we have that L is generated over K by α1,. . . , αd, each
of which is algebraic over K. By our theorem on simple extensions and the proof
of the tower law, this means that every element of γ ∈ L can be written as a finite
sum

γ =
∑

cm1,m2,...,md
αm1

1 αm2

2 · · ·αmd

d

with the coefficients cm1,...,md
∈ K. Thus for any σ ∈ Aut(L/K) we have

σ(γ) =
∑

σ(cm1,m2,...,md
)σ(α1)

m1σ(αm2

2 ) · · ·σ(αd)
md

=
∑

cm1,m2,...,md
σ(α1)

m1σ(αm2

2 ) · · ·σ(αd)
md .

Where the last equality is because σ fixes K. If, in addition, σ(αi) = αi for
i = 1,. . . , d, then this becomes

σ(γ) =
∑

cm1,m2,...,md
σ(α1)

m1σ(αm2

2 ) · · ·σ(αd)
md

=
∑

cm1,m2,...,md
αm1

1 αm2

2 · · ·αmd

d = γ,

in other words, σ(γ) = γ. Since γ was an arbitrary element of L, we conclude that
σ fixes all of L, so that σ = IdL.

Remark. This question is asking about a principle (and the argument behind it) that
we have used several times : if L is generated over K by a set S, and if σ ∈ Aut(L/K)
fixes all the elements in S, then σ must fix all of L, and hence σ = IdL.

(c) The kernel of the homomorphism ϕ : G −→ Perm(G) consists of those automor-
phism which permute S trivially, i.e, those σ ∈ G such that σ(αi) = αi for all
αi ∈ S. By part (b) the only such σ ∈ G is σ = IdL, which is the identity of G.
Therefore kerϕ = {IdL}, and so ϕ is injective.

(d) Let αi and αj be any two roots. As noted above, p(x) is irreducible and (up to
scaling to make it monic) is the minimal polynomial of both αi and αj . By the
theorem on simple extensions we therefore have an isomorphism

ϕ : K(αi) ∼=
K[x]

(p(x))
∼= K(αj),

K(αi) K(αj)

L L

∼
ϕ

σ

which takes αi to αj and acts as the identity on K. We lift
this automorphism to a map σ : L −→ L by using the lifting
lemma.

We need to check that the hypothesis of the lifting lemma
is satisfied. Since L is generated over K by α1,. . . , αd, it
is certainly true that α1,. . . , αd generate L over the larger field K(αi). Pick αℓ,
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and let qℓ(x) ∈ K(αi) be the minimal polynomial of αℓ over K(αi). Since αℓ is
also root of p(x), we have qℓ(x) | p(x). Therefore ϕ(qℓ(x)) divides ϕ(p(x)) = p(x).
(The equality ϕ(p(x)) = p(x) follows since all coefficients of p(x) are in K, and
ϕ fixes K.) Since p(x) splits completely in L, ϕ(qℓ(x)) also must split completely
in L and so the hypothesis of the lifting lemma is satisfied.

Thus by the lifting lemma there exists σ : L −→ L lifting ϕ.
The map ψ must be an isomorphism since it is an injective
map between K vector spaces of the same dimension. Thus σ is an automorphism
of L, and σ(αi) = αj. Since αi and αj were arbitrary, this shows that G acts
transitively on S.

Remarks. () This argument, using the lifting lemma to find an automorphism which
takes one root of an irreducible polynomial to another, is also one which we have been
using when studying Galois groups in particular examples. () As part of this argument,
we have verified something which has previously been passed over in silence : when using
the inductive part of the lifting lemma, how do we know that the new larger field still
satisfies the hypothesis of the lifting lemma? The argument here shows how to use the
fact that the new minimal polynomial in the larger field will have to divide the old
minimal polynomial from the smaller field, and the fact that the hypothesis held for the
smaller field, to deduce that the hypothesis holds for the larger field.

(e) By picking a bijection of α1,. . . , αd (for instance, αi ↔ i) we obtain an isomorphism
of Perm(S) with Sd. Combining this with the homomorphism G −→ Perm(S)
from the action of G on S, we get a homomorphism G −→ Sd. By part (c) this
homomorphism is injective. By part (d) G acts transitively on S and hence its
image in Sd acts transitively on {1, . . . , d}.

Remark. In trying to identify and understand Galois groups, one of our tools has been
looking for ways to represent the group concretely. For instance, each σ ∈ Gal(L/K) is
a K-linear transformation, so we could write down the matrix associated to σ. On the
other hand, when studying extensions like Q( 3

√
2, ω)/Q and Q(5

1

4 , i)/Q it was convenient
to understand G by studying how G permuted the generators and the other roots of
their minimal polynomials. This problem is applying that idea to the case that L/K is
generated by the roots of a single irreducible polynomial. Then we know that G can be
realized as a transitive subgroup of Sd, a result we will use in developing algorithms for
finding Galois groups.
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2. Let K = Q, and ζ = e2πi/7. By H3 Q1, the minimal polynomial of ζ over Q is
q(x) = x6 + x5 + x5 + x3 + x2 + x+ 1 = x7

−1

x−1
.

(a) Show that all other roots of q(x) are powers of ζ , and explain why this shows that
L = Q(ζ) is the splitting field for q(x).

(b) Let G = Gal(L/Q). For σ ∈ G, explain why σ is completely determined by what
it does to ζ . (i.e., once you know what σ(ζ) is, you know how σ acts on all of L.)

(c) Compute the Galois group G = Gal(L/Q). (Keeping in mind part (b) of this
question, and part (d) of question 1 may help, but don’t get hung up on it if it
doesn’t.)

(d) Describe the subgroups of G, and draw the corresponding diagram of intermediate
fields between Q and L.

(e) Compute the Galois groups for the extensions Q(cos(2π
7
))/Q and Q(i sin(2π

7
))/Q,

where i =
√
−1. (Note: These are subfields of L.)

Solution.

(a) For any m ∈ Z, we have (ζm)7 = (e2mπi/7)7 = e2mπi = 1, that is, all powers of ζ
satisfy the equation x7 − 1 = 0. For m = 1, . . . , 6 these powers are distinct, and
not equal to 1.

1

ζ
ζ2

ζ3

ζ4

ζ5
ζ6

C
In fact, as we know, the powers ζm, m = 0, . . . , 6 are
all of the 7-th roots of unity, distributed in a 7-gon
(i.e, a heptagon) with one of the vertices at 1 ∈ C.

Since the ζm, m = 1,. . . , 6 are not equal to 1, they
are roots of x7

−1

x−1
= q(x). Since q(x) has degree 6, the

elements ζ1,. . . , ζ6 are all the roots of q(x).

Thus Q(ζ) = Q(ζ1, ζ2, . . . , ζ6) is generated by the
roots of q(x), and so is the splitting field for q(x)
over Q.

(b) Since ζ generates L over Q, once we know what σ ∈ Gal(L/Q) does to ζ , we
can deduce what σ does to any element of L. Specifically, since q(x) has degree
6, we know that 1, ζ , ζ2, . . . , ζ5 is a basis for L over Q, so that any γ ∈ L
can be written γ = c0 · 1 + c1ζ + c2ζ

2 + · · · c5ζ5 with c0,. . . , c5 ∈ Q. Then
σ(γ) = c0 · 1 + c1σ(ζ) + · · ·+ c5σ(ζ)

5, i.e, what σ does to ζ completely determines
what σ does to any other element of L.
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(c) By part (b), to understand G = Gal(L/Q) we only need to pay attention to what
σ does to ζ . By Q1(d), for each m, m = 1, . . . , 6, there is a σm ∈ G such that
σm(ζ) = ζm. Since these elements do different things to ζ , they must all be distinct,
and so we have 6 different elements of G. Since |G| = [L : Q] = deg q(x) = 6,
these are all the elements of G.

For reference, here is what each of the σm to do the powers ζ ,. . . , ζ6 of ζ :

ζ ζ2 ζ3 ζ4 ζ5 ζ6

σ1 ζ ζ2 ζ3 ζ4 ζ5 ζ6

σ2 ζ2 ζ4 ζ6 ζ ζ3 ζ5

σ3 ζ3 ζ6 ζ2 ζ5 ζ ζ4

σ4 ζ4 ζ ζ5 ζ2 ζ6 ζ3

σ5 ζ5 ζ3 ζ ζ6 ζ4 ζ2

σ6 ζ6 ζ5 ζ4 ζ3 ζ2 ζ

In making the table we used the rule that
ζm = ζm

′

if m ≡ m′ (mod 7).

Now which group is G? Let us try and fig-
ure out the rule of composition. For any m
and n, we have σm(σn(ζ)) = σm(ζ

n) = ζmn.
Let r be the element of {1, . . . , 6} which is
congruent to mn mod 7. We then have

σm(σn(ζ)) = ζmn = ζr = σr(ζ).

Since any element of G is completely determined by what it does to ζ , this tells
us we must have σmσn = σr. Thus the law of composition in G is

σmσn = σmnmod 7.

From this we can write down the multiplication table for the group :

◦ σ1 σ2 σ3 σ4 σ5 σ6

σ1 σ1 σ2 σ3 σ4 σ5 σ6
σ2 σ2 σ4 σ6 σ1 σ3 σ5
σ3 σ3 σ6 σ2 σ5 σ1 σ4
σ4 σ4 σ1 σ5 σ2 σ6 σ3
σ5 σ5 σ3 σ1 σ6 σ4 σ2
σ6 σ6 σ5 σ4 σ3 σ2 σ1

We can also recognize the group. The law of
composition is telling us that G is isomorphic
to the group of units mod 7, i.e., to the mul-
tiplicative group of F7. We know that this
group is cyclic, and hence our group G is the
cyclic group of order 6.

A cyclic group of order 6 has two generators.
In this case, σ3 and σ5 are generators (i.e., have order 6). The elements of order
3 are σ2 and σ4, the element of order 2 is σ6, and the identity is σ1.

(d) A cyclic group of order 6 has proper subgroups of orders 2 and 3. By looking at
the orders of the elements from (c), we see that the subgroups are {σ1, σ5} and
{σ1, σ2, σ4}. Here are the lattices of subgroups and intermediate fields.
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(Reversed) lattice of subgroups

G

{σ1, σ6}
{σ1, σ2, σ4}

{σ1}

3

2

2

3

and

Lattice of intermediate fields

Q

Q(ζ + ζ6)

Q(
√
7i)

Q(ζ)

3

2

2

3

Let us now check that these intermediate fields are correct. Set H1 = {σ1, σ5}.
From the table we see that σ5 exchanges ζ and ζ6, ζ2 and ζ5, ζ3 and ζ4. (in fact,
since ζ6 = ζ−1 = ζ, we see that σ6 is the restriction of complex conjugation to
Q(ζ)). Using the formula ζ6 = −(ζ5 + ζ4 + · · ·+ ζ + 1) (deduced from p(ζ) = 0),
we see that the action of σ5 on an element γ = c0 + · · ·+ c5ζ

5 ∈ Q(ζ) is :

c0+c1ζ+c2ζ
2+c3ζ

3+c4ζ
4+c5ζ

5 σ6−→

(c0−c1)−c1ζ+(c5−c1)ζ2+(c4−c1)ζ3+(c3−c1)ζ4+(c2−c1)ζ5.
Comparing coefficients gives the equations

c0 = c0 − c1; c1 = −c1; c2 = c5 − c1;
c3 = c4 − c1; c4 = c3 − c1; c5 = c2 − c1.

These equations reduce to c1 = 0, c2 = c5 and c3 = c4, showing us that a basis for
LH1 over Q is 1, ζ2+ ζ5, and ζ3+ ζ4. Since (ζ2+ ζ5)2− 2 = (ζ4+2ζ7+ ζ10)− 2 =
ζ3 + ζ4, we see that ζ2 + ζ5 generates LH1 over Q. Therefore LH1 = Q(ζ2 + ζ5).

There are other possible generators for this field which are useful to know. For
instance, ζ + ζ6 is an element of LH1 . Using the relation for ζ6 above, we have
ζ + ζ6 = 1− (ζ2+ ζ5)− (ζ3+ ζ4) ∈ LH1 . Since (ζ + ζ6)2 − 2 = ζ2+ ζ5, we see that
ζ + ζ6 also generates LH1 over Q, i.e., LH1 = Q(ζ + ζ6). Since this description will
be useful for question (e) below, this is the description used in the lattice above.
Finally, (ζ3 + ζ4)2 − 2 = ζ + ζ6, so ζ3 + ζ4 is another generator of LH1 .

Now let H2 = {σ1, σ2, σ4}. Being fixed by H2 is the same as being fixed by σ2,
which generates H2. Acting on the powers of ζ , σ2 cycles them in groups of 3:
ζ 7→ ζ2 7→ ζ4 7→ ζ and ζ3 7→ ζ6 7→ ζ5 7→ ζ3. Once again using the relation for ζ6,
this means that σ2 has the following effect on a general γ ∈ L :

c0+c1ζ+c2ζ
2+c3ζ

3+c4ζ
4+c5ζ

5 σ2−→

(c0 − c3) + c4ζ + c1ζ
2 + (c5 − c3)ζ

3 + c2ζ
4 − c3ζ

5.
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Comparing coefficients gives the equations

c0 = c0 − c3; c1 = c4; c2 = c1;
c3 = c5 − c3; c4 = c2; c5 = −c3.

These equations reduce to : c1 = c2 = c4, c3 = c5 = 0, showing us that a basis for
LH2 over Q is 1, ζ + ζ2 + ζ4. In particular we have LH2 = Q(ζ + ζ2 + ζ4).

We can try and simplify this expression. Let γ = ζ + ζ2 + ζ4. Then γ2 =
ζ+ζ2+2ζ3+ζ4+2ζ5+2ζ6 = 2(ζ+ζ2+ζ3+ζ4+ζ5+ζ6)−γ = 2(−1)−γ = −γ−2.
Therefore γ2 + γ + 2 = 0, and γ is a root of p(x) = x2 + x+ 2. By the quadratic
formula, the roots of p(x) are 1

2

(

−1±
√
−7
)

. Therefore, LH2 is also the field

Q(
√
−7) = Q(

√
7i).

Remark. Some of the computations above could have been simplified slightly with a
choice of a different basis for L over Q. Using the relation for ζ6, the elements ζ , ζ2, ζ3,
ζ4, ζ5, and ζ6 are a basis for L over Q. The advantage of this basis is that G permutes
the elements, so it is easy to find fixed elements — they correspond to sums of basis
elements in orbits of the subgroup. For instance the action of σ6 in this basis is

c1ζ + c2ζ
2 + c3ζ

3 + c4ζ
4 + c5ζ

5 + c6ζ
6 σ6−→

c6ζ + c5ζ
2 + c4ζ

3 + c3ζ
4 + c2ζ

5 + c1ζ
6,

from which it is clear that ζ+ζ6, ζ2+ζ5, and ζ3+ζ4 are a basis of LH1 over Q. Similarly
the action of σ2 in this basis is

c1ζ + c2ζ
2 + c3ζ

3 + c4ζ
4 + c5ζ

5 + c6ζ
6 σ6−→

c4ζ + c1ζ
2 + c5ζ

3 + c2ζ
4 + c6ζ

5 + c3ζ
6,

from which we see that ζ + ζ2 + ζ4 and ζ3 + ζ5 + ζ6 are a basis for LH2 over Q.

(e) From complex analysis we have the identities cos(θ) = eiθ+e−iθ

2
and sin(θ) =

eiθ−e−iθ

2i
. With θ = 2π

7
, this gives

cos
(

2π
7

)

=
e

2πi

7 + e−
2πi

7

2
=
ζ + ζ−1

2
=
ζ + ζ6

2
.

and

i sin
(

2π
7

)

= i

(

e
2πi

7 − e−
2πi

7

2i

)

=
ζ − ζ−1

2
=
ζ − ζ6

2
.

Therefore Q(cos(2π
7
)) = Q(ζ + ζ6) and Q(i sin(2π

7
)) = Q(ζ − ζ6).
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From the Galois correspondence in (d), Q(ζ + ζ6) is the intermediate field cor-
responding to H1 (a normal subgroup, since G is abelian), and hence the Galois
group of Q(cos(2π

7
))/Q is G/H1, the cyclic group of order 3.

Which intermediate field is M = Q(i sin(2π
7
)) = Q(ζ − ζ6)? Perhaps the easiest

way to see, which also would have worked forQ(cos(2π
7
)), is to ask which subgroups

of L fix this field, and use the Galois correspondence. Since σ6(ζ − ζ6) = ζ6 − ζ =
−(ζ−ζ6), we see thatM is not fixed by H1. Since σ2(ζ−ζ6) = ζ2−ζ5 6= ζ−ζ6, we
see that M is also not fixed by H2. (And so M also cannot be fixed by G, which
contains both.) Therefore, in the lattice of subgroups, the only subgroup left to
fix M is {σ1}. The subgroup {σ1} corresponds to the field L, so Q

(

sin(2π
7
)
)

=
L = Q(ζ).

In the next two problems we will explore some further aspects of the Galois correspon-
dence.

3. Recall that a group G is a product G = H1 × H2 if and only if there are normal

subgroups H1 ⊂ G and H2 ⊂ G such that H1 ∩ H2 = {e} and H1 · H2 (the subgroup
generated by H1 and H2) is equal to G.

Suppose that K ⊆ L is a finite Galois extension, and M1 and M2 are two intermediate
fields such that:

. Both K ⊆M1 and K ⊆M2 are Galois extensions.

. M1 ∩M2 = K.

. The smallest subfield of L containing both M1 and M2 is L itself.

(a) If H1 and H2 are the subgroups of G = Aut(L/K) corresponding to M1 and M2

under the Galois correspondence, show that G = H1 ×H2.

(b) Conversely, if the Galois group G is a product G = H1×H2, then show that there
are two intermediate fields M1 and M2 having properties ()–() above.

(c) Consider again the extension Q(
√
2,
√
3)/Q and its intermediate fields Q(

√
2) and

Q(
√
3). Use (a) to find the Galois group Q(

√
2,
√
3)/Q. (This justifies the claim

about this Galois group from H6 Q3.)
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Solution.

Let L/K be a Galois extension with Galois group G, M1 and M2 intermediate fields
corresponding to subgroups H1 and H2 By the Galois correspondence, we have the
following equivalencies :

. Mi/K is a Galois extension if and only if Hi is a normal subgroup of K
. min(M1,M2) =M1 ∩M2 = K if and only if max(H1, H2) = 〈H1, H2〉 = G
. max(M1,M2) = 〈M1,M2〉 = L if and only if min(H1, H2) = H1 ∩H2 = {e}

In items  and  we have used the definitions of max and min in the lattices of in-
termediate fields and subgroups respectively. That is, in the lattice of subgroups,
min(H1, H2) = H1 ∩ H2 and max(H1, H2) = 〈H1, H2〉, the subgroup generated by H1

and H2. In the lattice of intermediate fields we have min(M1,M2) = M1 ∩ M2 and
max(M1,M2) = 〈M1,M2〉, i.e., the field generated by M1 and M2, or the smallest in-
termediate field containing M1 and M2. In  and  the equivalencies follow since, being
an order-reversing bijection of lattices, the Galois correspondence switches the max and
min.

(a) By the above equivalencies, the conditions stated are equivalent to the conditions
that H1 and H2 are normal subgroups of G, that H1 ∩H2 = {e}, and that H1 and
H2 generate G. In turn, this is equivalent to the statement that G = H1 ×H2.

(b) On the other hand, if G = H1 × H2 then we have normal subgroups H1 and H2

which generate G and such that H1 ∩ H2 = {e}. By the equivalencies above,
the corresponding intermediate fields M1 and M2 satisfy M1 ∩M2 = K, L is the
smallest subfield containing M1 and M2, and that both M1/K and M2/K are
Galois extensions.

(c) Let L = Q(
√
2,
√
3), with intermediate fields M2 = Q(

√
2), M1 = Q(

√
3) over

K = Q. The smallest field containing M1 and M2 will have to contain
√
2,

√
3,

and Q, and so contain Q(
√
2,
√
3). Conversely, Q(

√
2,
√
3) contains both M1 and

M2, so L is the smallest field containing M1 and M2. Both M1/Q and M2/Q are
degree 2 extensions, and hence Galois extensions (in characteristic 6= 2). Finally,
we have checked several times that M1 ∩M2 = Q. For instance, if M1 ∩M2 6= Q,
then M1 ∩M2 is a subfield of each of M1 and M2 larger than Q, and so for degree
reasons we would have to have M1 = M1 ∩M2 = M2. But we have shown in H1

Q3(c) that Q(
√
2) 6= Q(

√
3).

Therefore,M1 andM2 satisfy the conditions above. SettingH1 = Gal(Q(
√
3)/Q) ∼=

Z/2Z andH2 = Gal(Q(
√
2)/Q) ∼= Z/2Z, we therefore have thatG = Gal(Q(

√
2,
√
3)/Q) =

H1 ×H2.

The composition H1 →֒ G −→ G/H2 is an isomorphism, and G/H2 = Gal(M2/Q).
Let σ1 be the generator of Gal(M2/Q) (so that σ1(

√
2) = −

√
2), also use the name
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σ1 for the corresponding element of H1 under the isomorphism. Similarly, we let
σ2 be the generator of H2

∼= G/H1
∼= Gal(M1/Q) (so that σ2(

√
3) = −

√
3). We

then have that the elements of G are :

e = (e1, e2),
τ1 = (σ1, e2),
τ2 = (e1, σ2),

τ1τ2 = (σ1, σ2),

exactly as claimed in H6 Q3. Note that, since H1 fixes M1 and H2 fixes M2, we
also know that τ1(

√
3) =

√
3 and τ2(

√
2) =

√
2.

4. Suppose that L/K is a Galois extension with Galois group G, and let M1 ⊆ M2 be
intermediate fields, corresponding to subgroups H1 and H2 of G.

(a) What condition on H1 and H2 is equivalent to the condition that “M2/M1 is a
Galois extension”?

(b) Given that this condition on groups holds, what is Gal(M2/M1), i.e., how do you
compute Gal(M2/M1) from H1 and H2?

Solution.

(a) SinceM1 ⊂M2 we have H2 ⊂ H1 be the Galois correspondence. In fact, restricting
the intermediate fields to those intermediate fields containing M1, we have that
L/M1 is a Galois extension with Galois group H1, and the intermediate field
M1 ⊆ M2 ⊆ L corresponds to the subgroup H1. By the Galois correspondence,
M2/M1 is a Galois extension if and only if H2 is a normal subgroup of H1.

(b) If M2/M1 is a Galois extension (so that H2 is a normal subgroup of H1), then by
the Galois correspondence Gal(M2/M1) = H1/H2.
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