
Math 414 Answers for Homework 8

1. Recall that for a finite group G, the exponent of the group, exp(G) is defined as

exp(G) = min
{

m > 1 gm = e, for all g ∈ G
}

= lcm
{

ord(g) g ∈ G
}

.

In this problem we will prove the following result:

Lemma — Let G be a finite abelian group. Then exp(G) = |G| if and only if G is a
cyclic group.

(a) Show that if G is a cyclic group then exp(G) = |G|.

The proof of the other direction will take a bit longer.

(b) Suppose that gi, gj ∈ G and that ord(gi) and ord(gj) are relatively prime. Explain
why 〈gi〉 ∩ 〈gj〉 = {e}.

(c) Conclude that in the situation of (b), if gmi = gnj for some m,n ∈ Z, we must have
gmi = e and gnj = e.

(d) Again with the hypothesis of (b), if gi and gj commute, show that ord(gigj) =
ord(gi) ord(gj).

(e) Suppose that g ∈ G and that pe | ord(g), where p is a prime. Show that G has an
element of order exactly pe. (Hint: An appropriate power of g will work.)

Now we suppose that exp(G) = |G|, and let pe1
1
pe2
2
· · · perr be the prime factorization of

|G|.

(f) Explain why for each j, j = 1, . . . , r, there must be an element g′j ∈ G such that
p
ej
j | ord(g′j). (This will use the hypothesis that exp(G) = pe1

1
· · · perr .)

(g) Explain why for each j, j = 1, . . . , r, there must be an element gj ∈ G such that
ord(gj) = pej .

(h) Assuming that G is abelian and that exp(G) = |G|, show that G is cyclic. I.e.,
prove the other direction of the lemma.

(i) Compute exp(S3), where S3 is the symmetric group on three elements.

(j) Does the lemma hold for non-abelian groups?

1



Solution.

(a) Suppose that G is cyclic of order m. As with every finite group, for every g ∈ G
we have ord(g) | |G| = m. Since G is cyclic, it has a generator σ of order m.
Therefore

exp(G) = lcm
{

ord(g) g ∈ G
}

= m = |G|.

(b) Set Hi = 〈gi〉 and Hj = 〈gj〉. Then Hi and Hj are cyclic, with |Hi| = ord(gi) and
|Hj| = ord(gj). By the hypothesis ord(gi) and ord(gj) are relatively prime, and so
gcd(|Hi|, |Hj|) = 1. Let H = Hi ∩ Hj. Since H is a subgroup of Hi and Hj, we
have |H| | |Hi| and |H| | |Hj|, and therefore |H| | gcd(|Hi|, |Hj|) = 1. Therefore
|H| = 1 and H = {e}.

(c) If gmi = gnj , then this element is a member of both Hi and Hj , and so (by part
(b)) equal to e.

(d) Since gi and gj commute, for any k we have (gigj)
k = gki g

k
j . Therefore if k =

ord(gigj) we have e = (gigj)
k = gki g

k
j , which we can rewrite as gki = g−k

j . By part

(c) this means that gki = e and gkj = e. For any element g of a group, gm = e if and
only if ord(g) | m, so we conclude that ord(gi) | k and ord(gj) | k. Since ord(gi) and
ord(gj) are relatively prime this means that ord(gi) ord(gj) | k. On the other hand,
if we set m = ord(gi) ord(gj) then gmi = e and gmj = e so that (gigj)

m = gmi g
m
j = e.

This means that k | ord(gi) ord(gj). Thus ord(gigj) = k = m = ord(gi) ord(gj).

(e) Let m = ord(g) and write m = pe · n. Then ord(gn) = pe, since (gn)p
e

= gp
en =

gm = e, so that ord(gm) | pe. On the other hand, if 1 6 q < pe then (gn)q = gnq 6= e
since nq < m.

(f) Let m = |G| = pe1
1
· · · perr . For any g ∈ G we have ord(g) | m, which implies

that ord(g) = pf1
1
· · · pfrr for the same primes p1,. . . , pr, and with 0 6 fj 6 ej for

j = 1,. . . , r. When computing the lcm of a set of numbers, the power of pj (for
a fixed j in the lcm is the maximum of the power that pj appears in the factors.
If exp(G) = m, this means that for each j there must be some g′j ∈ G so that the
power of pj dividing ord(g′j) is exactly ej .

(g) Applying (e) to g′j we conclude that there is an element gj ∈ G with ord(gj) = p
ej
j .

(h) We used the hypothesis that exp(G) = |G| to prove the existance of the ele-
ments g1,. . . , gr in (g). If G is commutative, then all the gj commute, and
so applying (d) repeatedly to g1,. . . , gr we see that g = g1g2 · · · gr has order
ord(g1) ord(g2) · · ·ord(gr) = pe1

1
pe2
2
· · · perr = |G|. Since G has an element of order

|G|, G is a cyclic group.

(i) S3 has elements of order 1, 2, and 3. Therefore exp(G) = lcm{1, 2, 3} = 6 = |S3|.
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(j) The lemma does not hold for non-commutative groups. The non-commutative
group S3 is not cyclic (it is non-commutative!), but has exponent equal to its
order.

2. Find all monic irreducible polynomials of degree 3 in F3[x]. Check that the number
of such polynomials agrees with the formula for N3. (Note: There are 27 monic
polynomials of degree 3 in F3[x]. However, 9 have constant term 0, and so obviously
have x = 0 as a root, so there really are only 18 polynomials to check. Furthermore, for
those 18 you only have to check whether or not x = 1 and x = 2 are roots, since you’ve
already eliminated the possibility x = 0.)

Solution. Here is a table of the 18 polynomials with no constant term, along with the
status of each.

x3 + 1 x3 + 2 x3 + x+ 1 x3 + x+ 2 x3 + 2x+ 1 x3 + 2x+ 2
x = 2 root x = 1 root x = 1 root x = 2 root irreducible irreducible

x3 + x2 + 1 x3 + x2 + 2 x3 + x2 + x+ 1 x3 + x2 + x+ 2 x3 + x2 + 2x+ 1 x3 + x2 + 2x+ 2
x = 1 root irreducible x = 2 root irreducible irreducible x = 1, 2 roots

x3 + 2x2 + 1 x3 + 2x2 + 2 x3 + 2x2 + x+ 1 x3 + 2x2 + x+ 2 x3 + 2x2 + 2x+ 1 x3 + 2x2 + 2x+ 2
irreducible x = 2 root irreducible x = 1 root x = 1, 2 roots irreducible

There are 8 irreducible monic cubic polynomials over F3. This agrees with the formula

N3 =
1

3

(

p3 − p
)

= 1

3

(

33 − 3
)

= 1

3
· (27− 3) = 1

3
· 24 = 8.

3. The polynomial q(x) = x3 + x+1 ∈ F2[x] is irreducible, and so F = F2[x]/(q(x)) is a
field with 23 = 8 elements (i.e, F ∼= F8). Let α be the class of x in the quotient. Then
the elements of F can be written as aα2 + bα + c with a, b, c ∈ F2.

(a) Write out the multiplication table for the nonzero elements of F . (To keep the
answers uniform, use the order 1, α, α + 1, α2, α2 + 1, α2 + α, and α2 + α + 1 in
the table.) You do not have to include all the details of your computations, but
do include some sample multiplications to demonstrate how you carried out the
calculations.

(b) By looking at your table find an element β ∈ F ∗ of order 7, i.e., find a generator
of the cyclic group F ∗.

(c) The elements 1, α, and α2 form a basis for F over F2. In this basis, write out the
3× 3 matrix giving the action of σ2 ∈ Gal(F/F2) on F .
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(d) Check that the matrix you found in (c) has order 3, confirming in this case that
Gal(F/F2) is a cyclic group.

Solution.

(a) The multiplication table is

· 1 α α + 1 α
2

α
2 + 1 α

2 + α α
2 + α + 1

1 1 α α + 1 α2 α2 + 1 α2 + α α2 + α + 1
α α α2 α2 + α α + 1 1 α2 + α + 1 α2 + 1

α + 1 α + 1 α2 + α α2 + 1 α2 + α + 1 α2 1 α
α

2 α2 α + 1 α2 + α + 1 α2 + α α α2 + 1 1
α

2 + 1 α2 + 1 1 α2 α α2 + α + 1 α + 1 α2 + α
α

2 + α α2 + α α2 + α + 1 1 α2 + 1 α + 1 α α2

α
2 + α + 1 α2 + α + 1 α2 + 1 α 1 α2 + α α2 α + 1

In working out the table, the key relation is that α satisfies the polynomial q(x),
that is, α3 + α + 1 = 0, or α3 = −(α + 1) = α + 1 (The last equality is because
−1 = 1 in F2.) From this we also get α4 = α · α3 = α(α + 1) = α2 + α. As usual
we also have 2x = 0 for all x ∈ F8, since F8 has characteristic 2. Here are a few
sample computations using these identities :

α2 · (α+ 1) = α3 + α2 = (α+ 1) + α2 = α2 + α + 1;
(α2 + α) · (α+ 1) = α3 + 2α2 + α = (α + 1) + 0 + α = 1;

(α2 + α + 1) · (α2 + α+ 1) = α4 + α2 + 1 = (α2 + α) + α2 + 1 = α + 1.

(b) By our theorem from class F
∗

8
is a cyclic group of order 7. Since 7 is a prime

number, any element of the group different from the identity is a generator. (In
general, for a cyclic group of order m, any power of a generator relatively prime
to m is also a generator.)

To demonstrate this, here are the powers of all the nontrivial elements in γ ∈ F
∗

8
:

γ γ0 γ1 γ2 γ3 γ4 γ5 γ6

α 1 α α2 α + 1 α2 + α α2 + α + 1 α2 + 1
α + 1 1 α + 1 α2 + 1 α2 α2 + α + 1 α α2 + α
α

2 1 α2 α2 + α α2 + 1 α α + 1 α2 + α + 1
α

2 + 1 1 α2 + 1 α2 + α+ 1 α2 + α α + 1 α2 α
α

2 + α 1 α2 + α α α2 + α + 1 α2 α2 + 1 α + 1
α

2 + α + 1 1 α2 + α+ 1 α + 1 α α2 + 1 α2 + α α2
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The fact that F∗

8
is cyclic gives another way to work out the multiplication table

in part (a). Pick a generator of F∗

8
(say α) and write down its powers :

0 1 2 3 4 5 6
α 1 α α2 α + 1 α2 + α α2 + α + 1 α2 + 1

Then, we write out the multiplication table with the elements in the order we
chose, and beside each one write which power of α it is. We then multiply, by
adding exponents mod 7, to get the following table of exponents :

0 1 3 2 6 4 5

· 1 α α + 1 α
2

α
2 + 1 α

2 + α α
2 + α + 1

1 0 1 3 2 6 4 5
α 1 2 4 3 0 5 6

α + 1 3 4 6 5 2 0 1
α

2 2 3 5 4 1 6 0
α

2 + 1 6 0 2 1 5 3 4
α

2 + α 4 5 0 6 3 1 2
α

2 + α + 1 5 6 1 0 4 2 3

0

1

3
2
6

4

5

Finally, we look at the exponent table and read off the corresponding element of
the field, and fill it in to get the multiplication table.

(c) We have σ2(1) = 12 = 1 + 0 · α + 0 · α2, σ2(α) = α2 = 0 + 0 · α + 1α2, and
σ2(α

2) = α4 = α2 + α = 0 + 1 · α + 1 · α2. Therefore in the basis {1, α, α2} the
Frobenius automorphism σ2 has matrix





1 0 0
0 0 1
0 1 1



 .

(d) Let M be the matrix from part (c). Computing over F2 we have

M2 =





1 0 0
0 0 1
0 1 1



 ·





1 0 0
0 0 1
0 1 1



 =





1 0 0
0 1 1
0 1 0



 ,

M3 = M ·M2 =





1 0 0
0 0 1
0 1 1



 ·





1 0 0
0 1 1
0 1 0



 =





1 0 0
0 1 0
0 0 1



 .

Therefore σ2 does have order 3 in Gal(F8/F2).
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