1. Recall that for a finite group G, the exponent of the group, $\exp(G)$ is defined as

$$\exp(G) = \min\left\{m \ge 1 \mid g^m = e, \text{ for all } g \in G\right\} = \operatorname{lcm}\left\{\operatorname{ord}(g) \mid g \in G\right\}.$$

In this problem we will prove the following result:

LEMMA — Let G be a finite abelian group. Then $\exp(G) = |G|$ if and only if G is a cyclic group.

(a) Show that if G is a cyclic group then $\exp(G) = |G|$.

The proof of the other direction will take a bit longer.

- (b) Suppose that $g_i, g_j \in G$ and that $\operatorname{ord}(g_i)$ and $\operatorname{ord}(g_j)$ are relatively prime. Explain why $\langle g_i \rangle \cap \langle g_j \rangle = \{e\}$.
- (c) Conclude that in the situation of (b), if $g_i^m = g_j^n$ for some $m, n \in \mathbb{Z}$, we must have $g_i^m = e$ and $g_j^n = e$.
- (d) Again with the hypothesis of (b), if g_i and g_j commute, show that $\operatorname{ord}(g_ig_j) = \operatorname{ord}(g_i) \operatorname{ord}(g_j)$.
- (e) Suppose that $g \in G$ and that $p^e \mid \operatorname{ord}(g)$, where p is a prime. Show that G has an element of order exactly p^e . (HINT: An appropriate power of g will work.)

Now we suppose that $\exp(G) = |G|$, and let $p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}$ be the prime factorization of |G|.

- (f) Explain why for each j, j = 1, ..., r, there must be an element $g'_j \in G$ such that $p_j^{e_j} \mid \operatorname{ord}(g'_j)$. (This will use the hypothesis that $\exp(G) = p_1^{e_1} \cdots p_r^{e_r}$.)
- (g) Explain why for each j, j = 1, ..., r, there must be an element $g_j \in G$ such that $\operatorname{ord}(g_j) = p^{e_j}$.
- (h) Assuming that G is abelian and that $\exp(G) = |G|$, show that G is cyclic. I.e., prove the other direction of the lemma.
- (i) Compute $\exp(S_3)$, where S_3 is the symmetric group on three elements.
- (j) Does the lemma hold for non-abelian groups?

Solution.

(a) Suppose that G is cyclic of order m. As with every finite group, for every $g \in G$ we have $\operatorname{ord}(g) \mid |G| = m$. Since G is cyclic, it has a generator σ of order m. Therefore

$$\exp(G) = \operatorname{lcm}\left\{\operatorname{ord}(g) \mid g \in G\right\} = m = |G|.$$

- (b) Set $H_i = \langle g_i \rangle$ and $H_j = \langle g_j \rangle$. Then H_i and H_j are cyclic, with $|H_i| = \operatorname{ord}(g_i)$ and $|H_j| = \operatorname{ord}(g_j)$. By the hypothesis $\operatorname{ord}(g_i)$ and $\operatorname{ord}(g_j)$ are relatively prime, and so $\operatorname{gcd}(|H_i|, |H_j|) = 1$. Let $H = H_i \cap H_j$. Since H is a subgroup of H_i and H_j , we have $|H| \mid |H_i|$ and $|H| \mid |H_j|$, and therefore $|H| \mid \operatorname{gcd}(|H_i|, |H_j|) = 1$. Therefore |H| = 1 and $H = \{e\}$.
- (c) If $g_i^m = g_j^n$, then this element is a member of both H_i and H_j , and so (by part (b)) equal to e.
- (d) Since g_i and g_j commute, for any k we have $(g_ig_j)^k = g_i^k g_j^k$. Therefore if $k = \operatorname{ord}(g_ig_j)$ we have $e = (g_ig_j)^k = g_i^k g_j^k$, which we can rewrite as $g_i^k = g_j^{-k}$. By part (c) this means that $g_i^k = e$ and $g_j^k = e$. For any element g of a group, $g^m = e$ if and only if $\operatorname{ord}(g) \mid m$, so we conclude that $\operatorname{ord}(g_i) \mid k$ and $\operatorname{ord}(g_j) \mid k$. Since $\operatorname{ord}(g_i)$ and $\operatorname{ord}(g_j)$ are relatively prime this means that $\operatorname{ord}(g_i) \operatorname{ord}(g_j) \mid k$. On the other hand, if we set $m = \operatorname{ord}(g_i) \operatorname{ord}(g_j)$ then $g_i^m = e$ and $g_j^m = e$ so that $(g_ig_j)^m = g_i^m g_j^m = e$. This means that $k \mid \operatorname{ord}(g_i) \operatorname{ord}(g_j)$. Thus $\operatorname{ord}(g_ig_j) = k = m = \operatorname{ord}(g_i) \operatorname{ord}(g_j)$.
- (e) Let $m = \operatorname{ord}(g)$ and write $m = p^e \cdot n$. Then $\operatorname{ord}(g^n) = p^e$, since $(g^n)^{p^e} = g^{p^e n} = g^m = e$, so that $\operatorname{ord}(g^m) \mid p^e$. On the other hand, if $1 \leq q < p^e$ then $(g^n)^q = g^{nq} \neq e$ since nq < m.
- (f) Let $m = |G| = p_1^{e_1} \cdots p_r^{e_r}$. For any $g \in G$ we have $\operatorname{ord}(g) | m$, which implies that $\operatorname{ord}(g) = p_1^{f_1} \cdots p_r^{f_r}$ for the same primes p_1, \ldots, p_r , and with $0 \leq f_j \leq e_j$ for $j = 1, \ldots, r$. When computing the lcm of a set of numbers, the power of p_j (for a fixed j in the lcm is the maximum of the power that p_j appears in the factors. If $\exp(G) = m$, this means that for each j there must be some $g'_j \in G$ so that the power of p_j dividing $\operatorname{ord}(g'_j)$ is exactly e_j .
- (g) Applying (e) to g'_j we conclude that there is an element $g_j \in G$ with $\operatorname{ord}(g_j) = p_j^{e_j}$.
- (h) We used the hypothesis that $\exp(G) = |G|$ to prove the existance of the elements g_1, \ldots, g_r in (g). If G is commutative, then all the g_j commute, and so applying (d) repeatedly to g_1, \ldots, g_r we see that $g = g_1g_2 \cdots g_r$ has order $\operatorname{ord}(g_1)\operatorname{ord}(g_2) \cdots \operatorname{ord}(g_r) = p_1^{e_1}p_2^{e_2} \cdots p_r^{e_r} = |G|$. Since G has an element of order |G|, G is a cyclic group.
- (i) S_3 has elements of order 1, 2, and 3. Therefore $\exp(G) = \operatorname{lcm}\{1, 2, 3\} = 6 = |S_3|$.

(j) The lemma does not hold for non-commutative groups. The non-commutative group S_3 is not cyclic (it is non-commutative!), but has exponent equal to its order.

2. Find all monic irreducible polynomials of degree 3 in $\mathbb{F}_3[x]$. Check that the number of such polynomials agrees with the formula for N_3 . (NOTE: There are 27 monic polynomials of degree 3 in $\mathbb{F}_3[x]$. However, 9 have constant term 0, and so obviously have x = 0 as a root, so there really are only 18 polynomials to check. Furthermore, for those 18 you only have to check whether or not x = 1 and x = 2 are roots, since you've already eliminated the possibility x = 0.)

Solution. Here is a table of the 18 polynomials with no constant term, along with the status of each.

$x^3 + 1$	$x^3 + 2$	$x^3 + x + 1$	$x^3 + x + 2$	$x^3 + 2x + 1$	$x^3 + 2x + 2$
x = 2 root	x = 1 root	x = 1 root	x = 2 root	irreducible	irreducible
$x^3 + x^2 + 1$	$x^3 + x^2 + 2$	$x^3 + x^2 + x + 1$	$x^3 + x^2 + x + 2$	$x^3 + x^2 + 2x + 1$	$x^3 + x^2 + 2x + 2$
x = 1 root	irreducible	x = 2 root	irreducible	irreducible	x = 1, 2 roots
$x^3 + 2x^2 + 1$	$x^3 + 2x^2 + 2$	$x^3 + 2x^2 + x + 1$	$x^3 + 2x^2 + x + 2$	$x^3 + 2x^2 + 2x + 1$	$x^3 + 2x^2 + 2x + 2$
irreducible	x = 2 root	irreducible	x = 1 root	x = 1, 2 roots	irreducible

There are 8 irreducible monic cubic polynomials over \mathbb{F}_3 . This agrees with the formula

$$N_3 = \frac{1}{3} \left(p^3 - p \right) = \frac{1}{3} \left(3^3 - 3 \right) = \frac{1}{3} \cdot (27 - 3) = \frac{1}{3} \cdot 24 = 8.$$

3. The polynomial $q(x) = x^3 + x + 1 \in \mathbb{F}_2[x]$ is irreducible, and so $F = \mathbb{F}_2[x]/(q(x))$ is a field with $2^3 = 8$ elements (i.e, $F \cong \mathbb{F}_8$). Let α be the class of x in the quotient. Then the elements of F can be written as $a\alpha^2 + b\alpha + c$ with $a, b, c \in \mathbb{F}_2$.

- (a) Write out the multiplication table for the nonzero elements of F. (To keep the answers uniform, use the order 1, α , $\alpha + 1$, α^2 , $\alpha^2 + 1$, $\alpha^2 + \alpha$, and $\alpha^2 + \alpha + 1$ in the table.) You do not have to include all the details of your computations, but do include some sample multiplications to demonstrate how you carried out the calculations.
- (b) By looking at your table find an element $\beta \in F^*$ of order 7, i.e., find a generator of the cyclic group F^* .
- (c) The elements 1, α , and α^2 form a basis for F over \mathbb{F}_2 . In this basis, write out the 3×3 matrix giving the action of $\sigma_2 \in \operatorname{Gal}(F/\mathbb{F}_2)$ on F.

(d) Check that the matrix you found in (c) has order 3, confirming in this case that $\operatorname{Gal}(F/\mathbb{F}_2)$ is a cyclic group.

Solution.

(a) The multiplication table is

•	1	α	$\alpha + 1$	$lpha^2$	$\alpha^2 + 1$	$lpha^2 + lpha$	$\alpha^2 + \alpha + 1$
1	1	α	$\alpha + 1$	α^2	$\alpha^2 + 1$	$\alpha^2 + \alpha$	$\alpha^2 + \alpha + 1$
α	α	α^2	$\alpha^2 + \alpha$	$\alpha + 1$	1	$\alpha^2 + \alpha + 1$	$\alpha^2 + 1$
lpha+1	$\alpha + 1$	$\alpha^2 + \alpha$	$\alpha^2 + 1$	$\alpha^2 + \alpha + 1$	α^2	1	α
α^2	α^2	$\alpha + 1$	$\alpha^2 + \alpha + 1$	$\alpha^2 + \alpha$	α	$\alpha^2 + 1$	1
$\alpha^2 + 1$	$\alpha^2 + 1$	1	α^2	α	$\alpha^2 + \alpha + 1$	$\alpha + 1$	$\alpha^2 + \alpha$
$\alpha^2 + \alpha$		$\alpha^2 + \alpha + 1$	1	$\alpha^2 + 1$	$\alpha + 1$	α	α^2
$\alpha^2 + \alpha + 1$	$\alpha^2 + \alpha + 1$	$\alpha^2 + 1$	α	1	$\alpha^2 + \alpha$	α^2	$\alpha + 1$

In working out the table, the key relation is that α satisfies the polynomial q(x), that is, $\alpha^3 + \alpha + 1 = 0$, or $\alpha^3 = -(\alpha + 1) = \alpha + 1$ (The last equality is because -1 = 1 in \mathbb{F}_2 .) From this we also get $\alpha^4 = \alpha \cdot \alpha^3 = \alpha(\alpha + 1) = \alpha^2 + \alpha$. As usual we also have 2x = 0 for all $x \in \mathbb{F}_8$, since \mathbb{F}_8 has characteristic 2. Here are a few sample computations using these identities :

$$\begin{array}{rcl} \alpha^{2} \cdot (\alpha + 1) &=& \alpha^{3} + \alpha^{2} = (\alpha + 1) + \alpha^{2} = \alpha^{2} + \alpha + 1; \\ (\alpha^{2} + \alpha) \cdot (\alpha + 1) &=& \alpha^{3} + 2\alpha^{2} + \alpha = (\alpha + 1) + 0 + \alpha = 1; \\ (\alpha^{2} + \alpha + 1) \cdot (\alpha^{2} + \alpha + 1) &=& \alpha^{4} + \alpha^{2} + 1 = (\alpha^{2} + \alpha) + \alpha^{2} + 1 = \alpha + 1. \end{array}$$

(b) By our theorem from class \mathbb{F}_8^* is a cyclic group of order 7. Since 7 is a prime number, any element of the group different from the identity is a generator. (In general, for a cyclic group of order m, any power of a generator relatively prime to m is also a generator.)

To demonstrate this, here are the powers of all the nontrivial elements in $\gamma \in \mathbb{F}_8^*$:

γ	γ^0	γ^1	γ^2	γ^3	γ^4	γ^5	γ^6
α	1	α	α^2	$\alpha + 1$	$\alpha^2 + \alpha$	$\alpha^2 + \alpha + 1$	$\alpha^2 + 1$
$\alpha + 1$	1	$\alpha + 1$	$\alpha^2 + 1$	α^2	$\alpha^2 + \alpha + 1$	α	$\alpha^2 + \alpha$
α^2	1	α^2	$\alpha^2 + \alpha$	$\alpha^2 + 1$	α	$\alpha + 1$	$\alpha^2 + \alpha + 1$
$\alpha^2 + 1$	1	$\alpha^2 + 1$	$\alpha^2 + \alpha + 1$	$\alpha^2 + \alpha$	$\alpha + 1$	α^2	α
$\alpha^2 + \alpha$	1	$\alpha^2 + \alpha$	α	$\alpha^2 + \alpha + 1$	α^2	$\alpha^2 + 1$	$\alpha + 1$
$\alpha^2 + \alpha + 1$	1	$\alpha^2 + \alpha + 1$	$\alpha + 1$	α	$\alpha^2 + 1$	$\alpha^2 + \alpha$	α^2

The fact that \mathbb{F}_8^* is cyclic gives another way to work out the multiplication table in part (a). Pick a generator of \mathbb{F}_8^* (say α) and write down its powers :

	0	1	2	3	4	5	6
α	1	α	α^2	$\alpha + 1$	$\alpha^2 + \alpha$	$\alpha^2 + \alpha + 1$	$\alpha^2 + 1$

Then, we write out the multiplication table with the elements in the order we chose, and beside each one write which power of α it is. We then multiply, by adding exponents mod 7, to get the following table of exponents :

		0	1	3	2	6	4	5
	•	1	α	lpha+1	$lpha^2$	$\alpha^2 + 1$	$\alpha^2 + lpha$	$lpha^2 + lpha + 1$
0	1	0	1	3	2	6	4	5
1	α	1	2	4	3	0	5	6
3	lpha+1	3	4	6	5	2	0	1
2	$lpha^2$	2	3	5	4	1	6	0
6	$\alpha^2 + 1$	6	0	2	1	5	3	4
4	$\alpha^2 + \alpha$	4	5	0	6	3	1	2
5	$\alpha^2 + \alpha + 1$	5	6	1	0	4	2	3

Finally, we look at the exponent table and read off the corresponding element of the field, and fill it in to get the multiplication table.

(c) We have $\sigma_2(1) = 1^2 = 1 + 0 \cdot \alpha + 0 \cdot \alpha^2$, $\sigma_2(\alpha) = \alpha^2 = 0 + 0 \cdot \alpha + 1\alpha^2$, and $\sigma_2(\alpha^2) = \alpha^4 = \alpha^2 + \alpha = 0 + 1 \cdot \alpha + 1 \cdot \alpha^2$. Therefore in the basis $\{1, \alpha, \alpha^2\}$ the Frobenius automorphism σ_2 has matrix

$$\left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right].$$

(d) Let M be the matrix from part (c). Computing over \mathbb{F}_2 we have

$$M^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix},$$
$$M^{3} = M \cdot M^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Therefore σ_2 does have order 3 in $\operatorname{Gal}(\mathbb{F}_8/\mathbb{F}_2)$.