1. NEWTON'S RECURSION FOR THE POWER SUMS. Fix $n \geqslant 1$ and variables $x_{1}, \ldots$, $x_{n}$. For any $m \geqslant 1$ the $m$-th power sum is $P_{m}=x_{1}^{m}+x_{2}^{m}+\cdots+x_{n}^{m}$. Since $P_{m}$ is a symmetric polynomial Newton's theorem tells us we may express $P_{m}$ in terms of the elementary symmetric polynomials $e_{1}, \ldots, e_{n}$. A recursive formula, also due to Newton, gives a quick way to do this.
For purposes of the recursion we will use the symbol $e_{r}$ for all $r \geqslant 1$, with the convention that $e_{r}=0$ if $r>n$. We also set $P_{0}=1$, contrary to the formula for $m \geqslant 1$. Newton's recursion is

$$
P_{m}=e_{1} P_{m-1}-e_{2} P_{m-2}+e_{3} P_{m-3}-\cdots-(-1)^{m-1} e_{m-1} P_{1}-(-1)^{m} m e_{m} P_{0} .
$$

(Don't miss the factor of $m$ in the final term.) Starting with $P_{1}=e_{1}$, this tells us how to express the power sums in terms of the elementary symmetric polynomials. E.g., when $n=2$ we have

$$
P_{1}=e_{1} ; \quad P_{2}=e_{1} P_{1}-2 e_{2} P_{0}=e_{1}^{2}-2 e_{2} ; \quad P_{3}=e_{1} P_{2}-e_{2} P_{1}+3 e_{3} P_{0}=e_{1}^{3}-3 e_{1} e_{2} .
$$

Note that in computing $P_{3}$ we have used our convention that $e_{3}=0$ (since $n=2$ ).
(a) Suppose that $n=3$. Use Newton's recursion to compute the formulae for $P_{2}, P_{3}$, and $P_{4}$.
(b) Let $\alpha_{1}, \alpha_{2}$, and $\alpha_{3}$ be the roots of $f=x^{3}+5 x^{2}+6 x-4$. Compute $\alpha_{1}^{4}+\alpha_{2}^{4}+\alpha_{3}^{4}$.

## Solution.

(a) When $n=3$ we have

$$
\begin{array}{ll}
P_{1} & =e_{1} ; \\
P_{2}=e_{1} P_{1}-2 e_{2} P_{0} & =e_{1}^{2}-2 e_{2} ; \\
P_{3}=e_{1} P_{2}-e_{2} P_{1}+3 e_{3} P_{0} & =e_{1}^{3}-3 e_{1} e_{2}+3 e_{3} ; \text { and } \\
P_{4}=e_{1} P_{3}-e_{2} P_{2}+e_{3} P_{1}-4 e_{4} P_{0} & =e_{1}^{4}-4 e_{1}^{2} e_{2}+4 e_{1} e_{3}+2 e_{2}^{2} .
\end{array}
$$

In the formula for $P_{4}$ we have used our convention that $e_{4}=0$ since $n=3$.
(b) The values of the elementary symmetric polynomials evaluated at the roots of $f$ are $e_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=-5, e_{2}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=6$, and $e_{3}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=4$. Substituting this into our formula from part (a) we get

$$
\alpha_{1}^{4}+\alpha_{2}^{4}+\alpha_{3}^{4}=P_{4}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(-5)^{4}-4(-5)^{2} \cdot 6+4(-5)(4)+2(6)^{2}=17
$$

2. For each of the following cubic polynomials $f$ compute $\operatorname{Gal}(L / \mathbb{Q})$ where $L$ is the splitting field of $f$. If you are claiming that the polynomial $f$ is irreducible over $\mathbb{Q}$, be sure to include a justification. (CaUtIon: at least one of the cubics is reducible.) Also recall that if $f=x^{3}+b x^{2}+c x+d$, then

$$
\Delta(f)=b^{2} c^{2}+18 b c d-4 b^{3} d-4 c^{3}-27 d^{2}
$$

(a) $f_{1}=x^{3}+4 x^{2}+x+1$.
(b) $f_{2}=x^{3}+4 x^{2}+2 x-2$.
(c) $f_{3}=x^{3}+4 x^{2}+3 x-1$.
(d) $f_{4}=x^{3}+4 x^{2}+4 x+1$.

Solution. If a cubic $f$ is irreducible over $\mathbb{Q}$, then we know that its Galois group is $C_{3}$ or $S_{3}$, and that $\delta(f)=\sqrt{\Delta(f)}$ distinguishes between these cases. Specifically, $\delta(f) \in \mathbb{Q}$ if and only if the Galois group is $C_{3}$. (In general $\delta(f)$ detects whether or not the Galois group is contained in the alternating group $A_{d}$.)
(a) $f_{1}=x^{3}+4 x^{2}+x+1$ is irreducible. One way to see this is that $f_{1} \equiv x^{3}+x+1 \bmod 2$, and over $\mathbb{F}_{2}[x]$ the cubic $x^{3}+x+1$ has no roots. Its discriminant is $\Delta\left(f_{1}\right)=-199$, and $\delta(f)=\sqrt{-199} \notin \mathbb{Q}$. Therefore the Galois group is $S_{3}$.
(b) $f_{2}=x^{3}+4 x^{2}+2 x-2$ is irreducible. One way to see this is to apply Eisenstein's criterion with the prime $p=2$. Its discriminant is $\Delta\left(f_{2}\right)=148=2^{2} \cdot 37$, and $\delta\left(f_{2}\right)=\sqrt{148}=2 \sqrt{37} \notin \mathbb{Q}$. Therefore the Galois group is $S_{3}$ again.
(c) $f_{3}=x^{3}+4 x^{2}+3 x-1$ is irreducible. One way to see this is that $f_{3} \equiv x^{3}+x+1 \bmod$ 2 , which we've already seen is irreducible in $\mathbb{F}_{2}$. The discriminant is $\Delta\left(f_{3}\right)=49$, and $\delta\left(f_{3}\right)=7 \in \mathbb{Q}$. Therefore the Galois group is $C_{3}$.
(d) $f_{4}=x^{3}+4 x^{2}+4 x+1=(x+1)\left(x^{2}+3 x+1\right)$. The factor $x^{2}+3 x+1$ is irreducible over $\mathbb{Q}$, for instance because its discriminant $3^{2}-4 \cdot 1 \cdot 1=5$ has no square root in $\mathbb{Q}$. The splitting field of $f_{4}$ is therefore a quadratic extension over $\mathbb{Q}$, obtained by adjoining the roots of $x^{2}+3 x+1$ and the root $x=-1$ of $x+1$. Specifically the splitting field is $\mathbb{Q}(\sqrt{5})$. Like all degree 2 extensions its Galois group is $S_{2}$, the cyclic group of order 2 .
3. In this problem we will see what the sign of the discriminant of a real cubic polynomial tells us about its real or complex roots. Let $f=x^{3}+b x^{2}+c x+d \in \mathbb{R}[x]$. We assume that $f$ has distinct roots, that is, that $\Delta(f) \neq 0$. We do not need to assume that $f$ is irreducible.
(a) Explain why $f$ has to have at least one real root. (Hint: This is really a problem in calculus, in particular, the intermediate value theorem may be useful.)

Let $\alpha_{1}$ be any real root, and $\alpha_{2}$ and $\alpha_{3}$ the other two roots.
(b) Assume that $\alpha_{2}$ and $\alpha_{3}$ are real. Show that $\Delta(f)>0$. (SugGestion: first show that $\delta(f) \in \mathbb{R}$.)
(c) Now assume that $\alpha_{2}$ is not real. Show that $\alpha_{3}=\bar{\alpha}_{2}$, i.e., that $\alpha_{2}$ and $\alpha_{3}$ are conjugate complex numbers.
(d) By (c) we may write $\alpha_{2}=a-b i$ and $\alpha_{3}=a+b i$ for some $a, b \in \mathbb{R}$, with $b \neq 0$. Show that $\Delta(f)<0$. (Suggestion: first show that $\delta(f)$ is purely imaginary, i.e., of the form $i \cdot t$ for some real number $t \neq 0$.)

## Solution.

(a) The leading term of $f$ is $x^{3}$, so $\lim _{x \rightarrow \infty} f(x)=\infty$, $\lim _{x \rightarrow \infty} f(x)=-\infty$. Since $f$ is a continuous function, by the intermediate value theorem $f$ takes on every value in between. In particular, there is some $\alpha \in \mathbb{R}$ such that $f(\alpha)=0$.
(b) We have $\delta(f)=\left(\alpha_{3}-\alpha_{2}\right)\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{2}-\alpha_{1}\right)$. Since $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{R}, \delta(f) \in \mathbb{R}$, and therefore $\Delta(f)=\delta(f)^{2} \geqslant 0$. We already know that $\Delta(f) \neq 0$, and therefore $\Delta(f)>0$.
(c) Since $f$ has real coefficients, $\overline{f(x)}=f(x)$. Therefore

$$
0=\overline{0}=\overline{f\left(\alpha_{2}\right)}=\bar{f}\left(\bar{\alpha}_{2}\right)=f\left(\bar{\alpha}_{2}\right) .
$$

I.e., $\bar{\alpha}_{2}$ is also a root of $f$. Since $\alpha_{2}$ is not real, $\bar{\alpha}_{2} \neq \alpha_{2}$, and therefore $\bar{\alpha}_{2}$ is a root of $f$ different from $\alpha_{2}$. We also cannot have $\bar{\alpha}_{2}=\alpha_{1}$, because $\alpha_{1}$ is real. Therefore $\bar{\alpha}_{2}$ must be equal to the only remaining root, namely $\alpha_{3}$.

REmark. The computation above is one we've done many times: if $\sigma$ is an automorphism of a field $L$, with fixed field $K$, then for any polynomial $f(x) \in K[x], \sigma$ takes roots of $f$ to roots of $f$. In (c) we are applying this with $L=\mathbb{C}, \sigma=$ complex conjugation, and $K=\mathbb{R}$.
(d) We have $\left(\alpha_{3}-\alpha_{2}\right)=2 b i$, and $\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{2}-\alpha_{1}\right)=\left(\bar{\alpha}_{2}-\alpha_{1}\right)\left(\alpha_{2}-\alpha_{1}\right)=\left\|\alpha_{2}-\alpha_{1}\right\|^{2}$. Therefore

$$
\delta(f)=\left(\alpha_{3}-\alpha_{2}\right)\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{2}-\alpha_{1}\right)=2 b \cdot\left\|\alpha_{2}-\alpha_{1}\right\|^{2} \cdot i .
$$

Thus

$$
\Delta(f)=\delta(f)^{2}=2 b^{2}\left\|\alpha_{2}-\alpha_{1}\right\|^{4} \cdot(i)^{2}=-4 b^{2}\left\|\alpha_{2}-\alpha_{1}\right\| \leqslant 0
$$

Since we already know that $\Delta(f) \neq 0$, this means that $\Delta(f)<0$.
4. In this problem we will work out a few other identities involving the discriminant. Let $f \in K[x]$ be a monic polynomial of degree $n$, with roots $\alpha_{1}, \ldots, \alpha_{n}$.
(a) For any $c \in K$, show that $\Delta(f(x+c))=\Delta(f(x))$. That is, show that translating the polynomial does not change the discriminant. (E.g. for $f=x^{3}+5 x^{2}+3 x+1$, $f(x-2)=(x-2)^{3}+5(x-2)^{2}+3(x-2)+1=x^{3}-x^{2}-5 x+7$ has the same discriminant as $f$.) Suggestion: What are the roots of $f(x+c)$ ?
(b) For any number $\beta$, explain why $\left(\beta-\alpha_{1}\right)\left(\beta-\alpha_{2}\right) \cdots\left(\beta-\alpha_{n}\right)=f(\beta)$.
(c) Let $g \in K[x]$ be a monic polynomial of degree $m$ with roots $\beta_{1}, \ldots, \beta_{m}$. Show that $\left(\prod_{i=1}^{m} f\left(\beta_{i}\right)\right)^{2}=\left(\prod_{j=1}^{n} g\left(\alpha_{j}\right)\right)^{2}$
(d) Show that $\Delta(f \cdot g)=\Delta(f) \cdot \Delta(g) \cdot\left(\prod_{i=1}^{m} f\left(\beta_{i}\right)\right)^{2}$.

## Solution.

(a) The roots of $f(x+c)$ are $\alpha_{1}-c, \alpha_{2}-c, \ldots, \alpha_{n}-c$, and so

$$
\Delta(f(x+c))=\prod_{1 \leqslant i<j \leqslant n}\left(\left(\alpha_{j}-c\right)-\left(\alpha_{i}-c\right)\right)=\prod_{1 \leqslant i<j \leqslant n}\left(\alpha_{j}-\alpha_{i}\right)=\Delta(f(x)) .
$$

(b) We have $f(x)=\prod_{j=1}^{n}\left(x-\alpha_{j}\right)$, since $\alpha_{1}, \ldots, \alpha_{n}$ are the roots of the monic polynomial $f$, and so substituting $x=\beta$ gives $\prod_{j=1}^{n}\left(\beta-\alpha_{j}\right)=f(\beta)$.
(c) Using (b) twice (once for $f$ and once for $g$ ), as well as $\left(\beta_{i}-\alpha_{j}\right)^{2}=\left(\alpha_{j}-\beta_{i}\right)^{2}$ and switching the order of the product, we have

$$
\left(\prod_{i=1}^{m} f\left(\beta_{i}\right)\right)^{2}=\prod_{j=1}^{n}\left(\prod_{i=1}^{m}\left(\beta_{i}-\alpha_{j}\right)^{2}\right)=\prod_{j=1}^{n}\left(\prod_{i=1}^{m}\left(\alpha_{j}-\beta_{i}\right)^{2}\right)=\left(\prod_{j=1}^{n} g\left(\alpha_{j}\right)\right)^{2}
$$

(d) If $\alpha_{1}, \ldots, \alpha_{n}$ are the roots of $f$, and $\beta_{1}, \ldots, \beta_{m}$ the roots of $g$, then the roots of $f \cdot g$ are $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{m}$. The number $\Delta(f \cdot g)$ is the product of the difference of all pairs of roots, squared. As we have seen from class, it does not matter which order we take the product in ( $\Delta$ is a symmetric function in the roots).

We can organize the product in $\Delta(f \cdot g)$ as :

- The product of the squares of all the differences of roots in $\alpha_{1}, \ldots, \alpha_{n}$;
- The product of the squares of all the differences of roots in $\beta_{1}, \ldots, \beta_{m}$; and
- the product of the square of the difference between a root in $\alpha_{1}, \ldots, \alpha_{n}$ and a root in $\beta_{1}, \ldots, \beta_{m}$.

The product in the first group is $\Delta(f)$, that in the second group is $\Delta(g)$, and that in the third group is

$$
\prod_{j=1}^{n}\left(\prod_{i=1}^{m}\left(\beta_{i}-\alpha_{j}\right)^{2}\right)=\left(\prod_{i=1}^{m} f\left(\beta_{i}\right)\right)^{2}
$$

by (c).
Therefore the product of all three is $\Delta(f \cdot g)=\Delta(f) \Delta(g) \prod_{i=1}^{m} f\left(\beta_{i}\right)^{2}$. (Which we could equally well write as $\Delta(f \cdot g)=\Delta(f) \Delta(g) \prod_{j=1}^{n} g\left(\alpha_{j}\right)^{2}$.)

