
Math 414 Answers for Homework 9

1. Newton’s recursion for the power sums. Fix n > 1 and variables x1, . . . ,
xn. For any m > 1 the m-th power sum is Pm = xm

1
+ xm

2
+ · · · + xm

n . Since Pm is
a symmetric polynomial Newton’s theorem tells us we may express Pm in terms of the
elementary symmetric polynomials e1,. . . , en. A recursive formula, also due to Newton,
gives a quick way to do this.

For purposes of the recursion we will use the symbol er for all r > 1, with the convention
that er = 0 if r > n. We also set P0 = 1, contrary to the formula for m > 1. Newton’s
recursion is

Pm = e1Pm−1 − e2Pm−2 + e3Pm−3 − · · · − (−1)m−1em−1P1 − (−1)mmemP0.

(Don’t miss the factor of m in the final term.) Starting with P1 = e1, this tells us how to
express the power sums in terms of the elementary symmetric polynomials. E.g., when
n = 2 we have

P1 = e1; P2 = e1P1 − 2e2P0 = e2
1
− 2e2; P3 = e1P2 − e2P1 + 3e3P0 = e3

1
− 3e1e2.

Note that in computing P3 we have used our convention that e3 = 0 (since n = 2).

(a) Suppose that n = 3. Use Newton’s recursion to compute the formulae for P2, P3,
and P4.

(b) Let α1, α2, and α3 be the roots of f = x3 + 5x2 + 6x− 4. Compute α4

1
+ α4

2
+ α4

3
.

Solution.

(a) When n = 3 we have

P1 = e1;
P2 = e1P1 − 2e2P0 = e2

1
− 2e2;

P3 = e1P2 − e2P1 + 3e3P0 = e3
1
− 3e1e2 + 3e3; and

P4 = e1P3 − e2P2 + e3P1 − 4e4P0 = e4
1
− 4e2

1
e2 + 4e1e3 + 2e2

2
.

In the formula for P4 we have used our convention that e4 = 0 since n = 3.

(b) The values of the elementary symmetric polynomials evaluated at the roots of f
are e1(α1, α2, α3) = −5, e2(α1, α2, α3) = 6, and e3(α1, α2, α3) = 4. Substituting
this into our formula from part (a) we get

α4

1
+ α4

2
+ α4

3
= P4(α1, α2, α3) = (−5)4 − 4(−5)2 · 6 + 4(−5)(4) + 2(6)2 = 17.
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2. For each of the following cubic polynomials f compute Gal(L/Q) where L is the
splitting field of f . If you are claiming that the polynomial f is irreducible over Q, be
sure to include a justification. (Caution: at least one of the cubics is reducible.) Also
recall that if f = x3 + bx2 + cx+ d, then

∆(f) = b2c2 + 18bcd− 4b3d− 4c3 − 27d2.

(a) f1 = x3 + 4x2 + x+ 1.

(b) f2 = x3 + 4x2 + 2x− 2.

(c) f3 = x3 + 4x2 + 3x− 1.

(d) f4 = x3 + 4x2 + 4x+ 1.

Solution. If a cubic f is irreducible over Q, then we know that its Galois group is C3

or S3, and that δ(f) =
√

∆(f) distinguishes between these cases. Specifically, δ(f) ∈ Q

if and only if the Galois group is C3. (In general δ(f) detects whether or not the Galois
group is contained in the alternating group Ad.)

(a) f1 = x3+4x2+x+1 is irreducible. One way to see this is that f1 ≡ x3+x+1 mod 2,
and over F2[x] the cubic x

3+x+1 has no roots. Its discriminant is ∆(f1) = −199,
and δ(f) =

√
−199 6∈ Q. Therefore the Galois group is S3.

(b) f2 = x3 + 4x2 + 2x− 2 is irreducible. One way to see this is to apply Eisenstein’s
criterion with the prime p = 2. Its discriminant is ∆(f2) = 148 = 22 · 37, and
δ(f2) =

√
148 = 2

√
37 6∈ Q. Therefore the Galois group is S3 again.

(c) f3 = x3+4x2+3x−1 is irreducible. One way to see this is that f3 ≡ x3+x+1 mod
2, which we’ve already seen is irreducible in F2. The discriminant is ∆(f3) = 49,
and δ(f3) = 7 ∈ Q. Therefore the Galois group is C3.

(d) f4 = x3+4x2+4x+1 = (x+1)(x2+3x+1). The factor x2+3x+1 is irreducible
over Q, for instance because its discriminant 32 − 4 · 1 · 1 = 5 has no square root
in Q. The splitting field of f4 is therefore a quadratic extension over Q, obtained
by adjoining the roots of x2 + 3x + 1 and the root x = −1 of x + 1. Specifically
the splitting field is Q(

√
5). Like all degree 2 extensions its Galois group is S2, the

cyclic group of order 2.
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3. In this problem we will see what the sign of the discriminant of a real cubic polynomial
tells us about its real or complex roots. Let f = x3 + bx2 + cx+ d ∈ R[x]. We assume
that f has distinct roots, that is, that ∆(f) 6= 0. We do not need to assume that f is
irreducible.

(a) Explain why f has to have at least one real root. (Hint: This is really a problem
in calculus, in particular, the intermediate value theorem may be useful.)

Let α1 be any real root, and α2 and α3 the other two roots.

(b) Assume that α2 and α3 are real. Show that ∆(f) > 0. (Suggestion: first show
that δ(f) ∈ R.)

(c) Now assume that α2 is not real. Show that α3 = α2, i.e., that α2 and α3 are
conjugate complex numbers.

(d) By (c) we may write α2 = a − bi and α3 = a + bi for some a, b ∈ R, with b 6= 0.
Show that ∆(f) < 0. (Suggestion: first show that δ(f) is purely imaginary, i.e.,
of the form i · t for some real number t 6= 0.)

Solution.

(a) The leading term of f is x3, so limx→∞ f(x) = ∞, limx→∞ f(x) = −∞. Since f is
a continuous function, by the intermediate value theorem f takes on every value
in between. In particular, there is some α ∈ R such that f(α) = 0.

(b) We have δ(f) = (α3 − α2)(α3 − α1)(α2 − α1). Since α1, α2, α3 ∈ R, δ(f) ∈ R,
and therefore ∆(f) = δ(f)2 > 0. We already know that ∆(f) 6= 0, and therefore
∆(f) > 0.

(c) Since f has real coefficients, f(x) = f(x). Therefore

0 = 0 = f(α2) = f(α2) = f(α2).

I.e., α2 is also a root of f . Since α2 is not real, α2 6= α2, and therefore α2 is a root
of f different from α2. We also cannot have α2 = α1, because α1 is real. Therefore
α2 must be equal to the only remaining root, namely α3.

Remark. The computation above is one we’ve done many times : if σ is an automor-
phism of a field L, with fixed field K, then for any polynomial f(x) ∈ K[x], σ takes roots
of f to roots of f . In (c) we are applying this with L = C, σ =complex conjugation,
and K = R.
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(d) We have (α3−α2) = 2bi, and (α3−α1)(α2−α1) = (α2−α1)(α2−α1) = ‖α2−α1‖2.
Therefore

δ(f) = (α3 − α2)(α3 − α1)(α2 − α1) = 2b · ‖α2 − α1‖2 · i.

Thus
∆(f) = δ(f)2 = 2b2‖α2 − α1‖4 · (i)2 = −4b2‖α2 − α1‖ 6 0.

Since we already know that ∆(f) 6= 0, this means that ∆(f) < 0.

4. In this problem we will work out a few other identities involving the discriminant.
Let f ∈ K[x] be a monic polynomial of degree n, with roots α1,. . . , αn.

(a) For any c ∈ K, show that ∆(f(x+ c)) = ∆(f(x)). That is, show that translating
the polynomial does not change the discriminant. (E.g. for f = x3+5x2+3x+1,
f(x − 2) = (x − 2)3 + 5(x − 2)2 + 3(x − 2) + 1 = x3 − x2 − 5x + 7 has the same
discriminant as f .) Suggestion: What are the roots of f(x+ c)?

(b) For any number β, explain why (β − α1)(β − α2) · · · (β − αn) = f(β).

(c) Let g ∈ K[x] be a monic polynomial of degree m with roots β1,. . . , βm. Show that
(

∏m

i=1
f(βi)

)2

=
(

∏n

j=1
g(αj)

)2

(d) Show that ∆(f · g) = ∆(f) ·∆(g) · (
∏m

i=1
f(βi))

2
.

Solution.

(a) The roots of f(x+ c) are α1 − c, α2 − c,. . . , αn − c, and so

∆(f(x+ c)) =
∏

16i<j6n

(

(αj − c)− (αi − c)
)

=
∏

16i<j6n

(αj − αi) = ∆(f(x)).

(b) We have f(x) =
∏n

j=1

(

x− αj

)

, since α1,. . . , αn are the roots of the monic poly-

nomial f , and so substituting x = β gives
∏n

j=1
(β − αj) = f(β).

(c) Using (b) twice (once for f and once for g), as well as (βi − αj)
2 = (αj − βi)

2 and
switching the order of the product, we have

(

m
∏

i=1

f(βi)

)2

=
n
∏

j=1

(

m
∏

i=1

(βi − αj)
2

)

=
n
∏

j=1

(

m
∏

i=1

(αj − βi)
2

)

=

(

n
∏

j=1

g(αj)

)2

.
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(d) If α1,. . . , αn are the roots of f , and β1,. . . , βm the roots of g, then the roots of f ·g
are α1, . . . , αn, β1, . . . , βm. The number ∆(f · g) is the product of the difference of
all pairs of roots, squared. As we have seen from class, it does not matter which
order we take the product in (∆ is a symmetric function in the roots).

We can organize the product in ∆(f · g) as :

• The product of the squares of all the differences of roots in α1,. . . , αn;

• The product of the squares of all the differences of roots in β1,. . . , βm; and

• the product of the square of the difference between a root in α1,. . . , αn and
a root in β1,. . . , βm.

The product in the first group is ∆(f), that in the second group is ∆(g), and that
in the third group is

n
∏

j=1

(

m
∏

i=1

(βi − αj)
2

)

=

(

m
∏

i=1

f(βi)

)2

by (c).

Therefore the product of all three is ∆(f · g) = ∆(f)∆(g)
∏m

i=1
f(βi)

2. (Which we
could equally well write as ∆(f · g) = ∆(f)∆(g)

∏n

j=1
g(αj)

2.)
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