1. For each of the following quartic polynomials $f$ compute $\operatorname{Gal}(L / \mathbb{Q})$, where $L$ is the splitting field of $f$. The resultant cubic $p(t)$ and discriminant $\Delta(f)$ for each $f$ are included in the table. All of the polynomials are irreducible over $\mathbb{Q}$, a fact you may assume without having to prove.

| $f(x)$ | $p(t)$ | $\Delta(f)$ |
| :---: | :---: | :---: |

(a) $x^{4}-2 x^{3}+2 x^{2}+2 \quad t^{3}-2 t^{2}-8 t+8$

3136
(b) $x^{4}+x^{3}+2 x^{2}+2 x+1 \quad t^{3}-2 t^{2}-2 t+3 \quad 117$
(c) $x^{4}+2 x^{3}+2 x^{2}-2 x+1 \quad t^{3}-2 t^{2}-8 t \quad 2304$
(d) $x^{4}+x^{3}+x^{2}+x+1 \quad t^{3}-t^{2}-3 t+2 \quad 125$
(e) $\quad x^{4}+2 x^{3}+x^{2}-3 x+1 \quad t^{3}-t^{2}-10 t-9 \quad 257$

Solution. The algorithm for determining the Galois group of an irreducible quartic $f(x)=x^{4}+b x^{3}+c x^{2}+d x+e \in K[x]$ is explained in the chart below.

| $p(t)$ | $\delta(f)$ | $\sqrt{\left(b^{2}-4 c+4 \beta\right) \Delta(f)}$ and $\sqrt{\left(\beta^{2}-4 e\right) \Delta(f)}$ | Group |
| :---: | :---: | :---: | :---: |
| irred. over $K$ | $\notin K$ |  | $S_{4}$ |
| irred. over $K$ | $\in K$ |  | $A_{4}$ |
| splits completely in $K$ | $(\in K)$ |  | $V$ |
| one root $\beta \in K$ | $(\notin K)$ | one or both $\notin K$ | $D_{4}$ |
| one root $\beta \in K$ | $(\notin K)$ | both $\in K$ | $C_{4}$ |

Here $p(t)=t^{3}-c t^{2}+(b d-4 e) t+\left(4 c e-d^{2}-b^{2} e\right)$ is the resolvent cubic, and the discriminant of $f(x)$ may be computed by computing the discriminant of $p(t)$. Applying the algorithm we see the following.
(a) The Galois group is $A_{4}$. We have $\Delta(f)=2^{6} \cdot 7^{2}$ is a square, so $\delta(f)=2^{3} \cdot 7 \in \mathbb{Q}$. On the other hand, $p(t)=t^{3}-2 t^{2}-8 t+8$ is irreducible over $\mathbb{Q}$. One way to see that $p(t)$ is irreducible is to note that $p(t) \equiv t^{3}+t^{2}+t+2(\bmod 3)$, and that $t^{3}+t^{2}+t+2$ has no root in $\mathbb{F}_{3}$. Therefore, by the chart, the Galois group is $A_{4}$.
(b) The Galois group is $D_{4}$. The resolvent cubic factors as $t^{3}-2 t^{2}-2 t+3=(t-$ 1) • $t^{2}-t-3$ ), and the quadratic factor is irreducible since its discriminant $(-1)^{2}-4 \cdot(-3)(1)=13$ is not a square. Therefore the Galois group must be either $V$ or $D_{4}$. The root of $p(t)$ in $\mathbb{Q}$ is $\beta=1$, and $\Delta(f)=117=3^{2} \cdot 13$. Since $\left(b^{2}-4 c+4 \beta\right)=\left(1^{2}-4 \cdot 2+4 \cdot 1\right)=-3$, and $\left(b^{2}-4 c+4 \beta\right) \Delta(f)=-3 \cdot 117=-351$ is not a square in $\mathbb{Q}$, we see that the Galois group must be $D_{4}$. (It's also true that $\left(\beta^{2}-4 e\right) \Delta(f)=\left(1^{2}-4 \cdot 1\right) \cdot 117$, which is again -351 , is not a square in $\mathbb{Q}$.)
(c) The Galois group is $V$. The resolvent cubic factors completely over $\mathbb{Q}$ as $t^{3}$ $2 t^{2}-8 t=t(t+2)(t-4)$, and $V$ is the only possibility where the cubic factors completely.
(d) The Galois group is $C_{4}$. There are two ways to see this. The polynomial $f(x)=$ $x^{4}+x^{3}+x^{2}+x+1$ is the minimal polynomial of the primitive 5 -th root of unity $\zeta=e^{2 \pi i / 5}$ (for example by H3 Q1(a)). The Galois group after adding any $p$-th root of unity to $\mathbb{Q}$ is the same as the multiplicative group $\mathbb{F}_{p}^{*}$, which we know is cyclic of order $p-1$. (We did a computation like this for $p=7$ in H7 Q2.) Hence the Galois group is cyclic of order $5-1=4$.

Alternatively, we can use algorithm. The resolvent cubic factors as $p(t)=t^{3}-$ $t^{2}-3 t+2=(t-2)\left(t^{2}+t-1\right)$. The quadratic factor is irreducible over $\mathbb{Q}$ since its discriminant is $1^{2}-4(1)(-1)=5$, which is not a square in $\mathbb{Q}$. Therefore the Galois group must be $C_{4}$ or $D_{4}$. The root of $p(t)$ in $\mathbb{Q}$ is $\beta=2$, and $\Delta(f)=125=5^{3}$. Since $\left(b^{2}-4 c+4 \beta\right) \cdot \Delta(f)=\left(1^{2}-4(1)+4(2)\right) \cdot 125=5 \cdot 125=5^{4}$ is a square in $\mathbb{Q}$, and since $\left(\beta^{2}-4 e\right) \Delta(f)=\left(2^{2}-4(1)\right) \Delta(f)=0$ is a square in $\mathbb{Q}$, we see that the Galois group must be $C_{4}$.
(e) The Galois group is $S_{4}$. We have $\Delta(f)=257$ is prime, so $\Delta(f)$ is not a square in $\mathbb{Q}$. The resolvent cubic $p(t)=t^{3}-t^{2}-10 t-9$ and is irreducible over $\mathbb{Q}$. One way to see that $p(t)$ is irreducible over $\mathbb{Q}$ is to note that $p(t) \equiv t^{3}+t^{2}+1(\bmod$ 2 ), and that $t^{3}+t^{2}+1$ has no root over $\mathbb{F}_{2}$. Therefore (by the chart), the Galois group is $S_{4}$.
2. In class we skipped over almost all of the details of the algorithm for detecting the difference between $C_{4}$ and $D_{4}$ when computing the Galois group of an irreducible quartic polynomial. In this problem we will check some of the claims for the polynomial $g_{1}(t)$.
Let $K$ be a field of characteristic zero, and let $f=x^{4}+b x^{3}+c x^{2}+d x+e \in K[x]$ be an irreducible quartic with splitting field $L$. We suppose that the resultant cubic $p(t)$ has a single root $\beta \in K, \beta=\gamma_{13 \mid 24}$. Recall that this means that the Galois group $G$ is contained in $\langle(1234),(13)\rangle=D_{4}$, and is either $D_{4}$ or $C_{4}=\langle(1234)\rangle$. We set
$g_{1}(t)=\left(t-\left(\alpha_{1}+\alpha_{3}\right)\right)\left(t-\left(\alpha_{2}+\alpha_{4}\right)\right)=t^{2}-\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right) t+\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{2}+\alpha_{4}\right)=t^{2}+b t+(c-\beta)$.
The importance of the last equality is that it shows that $g_{1}(t) \in K[t]$.
(a) Explain what $\sigma=(1234)$ does to each of the roots $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and $\alpha_{4}$. (This question is to asking if you understand the isomorphism $\operatorname{Perm}(S) \cong S_{4}$ we have been using.)
(b) Show that $\left\{\alpha_{1}+\alpha_{3}, \alpha_{2}+\alpha_{4}\right\}$ is a single orbit under $C_{4}$ and $D_{4}$.
(c) There is nothing to say that $\alpha_{1}+\alpha_{3}$ and $\alpha_{2}+\alpha_{4}$ couldn't be equal. (The set in (b) could consist of a single element, e.g. $\{z, z\}=\{z\}$.) Show that $\alpha_{1}+\alpha_{3}=\alpha_{2}+\alpha_{4}$ if and only if $\alpha_{1}+\alpha_{3} \in K$. (Hint : Your calculation in (b) is relevant.)
(d) Conclude that either $g_{1}(t)$ is irreducible over $K$ or that $g_{1}(t)$ has a double root.
(e) Explain why either $\delta\left(g_{1}\right) \notin K$ or $\delta\left(g_{1}\right)=0$.

We now want to show that if $G=C_{4}$ then $\delta\left(g_{1}\right) \delta(f) \in K$. This is clear when $\delta\left(g_{1}\right)=0$, so for the rest of the problem we assume that $\delta\left(g_{1}\right) \neq 0$. We also assume that $G=C_{4}$.
(f) Explain why $\delta(f) \notin K$. (Reminders : What does $\delta(f)$ detect? What is $G$ ?)
(g) Explain why there is only one intermediate field $M \subset L$ of degree 2 over $K$.
(h) Explain why $K\left(\delta\left(g_{1}\right)\right)$ and $K(\delta(f))$ are degree 2 extensions of $K$.
(i) By (g) and (h) there are $a_{0}, a_{1} \in K$ such that $\delta\left(g_{1}\right)=a_{0}+a_{1} \delta(f)$. Since $\delta\left(g_{1}\right) \notin K$, $\delta\left(g_{1}\right)$ is not fixed by $G$, and hence there is some $\tau \in G$ so that $\tau \cdot \delta\left(g_{1}\right)=-\delta\left(g_{1}\right)$. Applying $\tau$ to the equation above, explain why this means that $a_{0}=0$.
(j) Explain why $\delta\left(g_{1}\right) \delta(f) \in K$.

Remarks. (1) The same argument, with $\alpha_{1} \alpha_{3}$ and $\alpha_{2} \alpha_{4}$ replacing $\alpha_{1}+\alpha_{3}$ and $\alpha_{2}+\alpha_{4}$, shows that if $G=C_{4}$ then $\delta\left(g_{2}\right) \delta(f) \in K$. (2) A separate (shorter) computation shows that both of these cannot happen if $G=D_{4}$, which leads to the criterion for the test.

## Solution.

(a) The isomorphism of $\operatorname{Perm}(S)$ and $S_{4}$ is obtained by matching the root $\alpha_{i}$ with the integer $i$. Since $\sigma$ sends 1 to 2,2 to 3,3 to 4 , and 4 to 1 , we have $\sigma\left(\alpha_{1}\right)=\alpha_{2}$, $\sigma\left(\alpha_{2}\right)=\alpha_{3}, \sigma\left(\alpha_{3}\right)=\alpha_{4}$, and $\sigma\left(\alpha_{4}\right)=\alpha_{1}$.
(b) From the formulae above we have $\sigma\left(\alpha_{1}+\alpha_{3}\right)=\sigma\left(\alpha_{1}\right)+\sigma\left(\alpha_{3}\right)=\alpha_{2}+\alpha_{4}$, and $\sigma\left(\alpha_{2}+\alpha_{4}\right)=\sigma\left(\alpha_{2}\right)+\sigma\left(\alpha_{4}\right)=\alpha_{1}+\alpha_{3}$. Since $\sigma$ swaps $\alpha_{1}+\alpha_{3}$ and $\alpha_{2}+\alpha_{4}$, the set $\left\{\alpha_{1}+\alpha_{3}, \alpha_{2}+\alpha_{4}\right\}$ is a single orbit of $C_{4}=\langle\sigma\rangle$. The group $D_{4}$, which contains $C_{4}$, might have a larger orbit since other elements of $D_{4}$ might send $\alpha_{1}+\alpha_{2}$ and $\alpha_{2}+\alpha_{4}$ to different elements of $L$. However $\tau=(13)$ fixes each of $\alpha_{1}+\alpha_{3}$ and $\alpha_{2}+\alpha_{4}$ (i.e, $\tau\left(\alpha_{1}+\alpha_{3}\right)=\alpha_{1}+\alpha_{3}$, and $\tau\left(\alpha_{2}+\alpha_{4}\right)=\alpha_{2}+\alpha_{4}$ ). Therefore the orbit of $D_{4}=\langle\sigma, \tau\rangle$ is again the set $\left\{\alpha_{1}+\alpha_{3}, \alpha_{2}+\alpha_{4}\right\}$.
(c) If $\alpha_{1}+\alpha_{3}$ is in $K$ then it is fixed by all elements of the Galois group. In particular $\sigma\left(\alpha_{1}+\alpha_{3}\right)=\alpha_{1}+\alpha_{3}$. Above we have calculated that $\sigma\left(\alpha_{1}+\alpha_{3}\right)=\alpha_{2}+\alpha_{4}$, and combining these we conclude that $\alpha_{1}+\alpha_{3}=\alpha_{2}+\alpha_{4}$. Conversely, if $\alpha_{1}+\alpha_{3}=\alpha_{2}+\alpha_{4}$ then by (b) the set $\left\{\alpha_{1}+\alpha_{3}, \alpha_{2}+\alpha_{4}\right\}=\left\{\alpha_{1}+\alpha_{3}\right\}$ is fixed by $G$, and so $\alpha_{1}+\alpha_{3}$ is in $L^{G}=K$.
(d) If $g_{1}(t)$ is reducible then both of its roots, namely $\alpha_{1}+\alpha_{3}$ and $\alpha_{2}+\alpha_{4}$ are in $K$. Then by (c) $\alpha_{1}+\alpha_{3}=\alpha_{2}+\alpha_{4}$, so that $g_{1}(t)$ has a double root. Conversely, if $g_{1}(t)$ has a double root then $\alpha_{1}+\alpha_{3}=\alpha_{2}+\alpha_{4}$ so again by (c) both are in $K$ and $g_{1}(t)$ factors over $K$.
(e) The quadratic formula tells us that a degree two polynomial $g(t) \in K[t]$ factors over $K$ if and only if its discriminant $\Delta(g)$ is a square in $K$. By (d) we either have $g_{1}(t)$ is irreducible (and so $\delta\left(g_{1}\right) \notin K$ ) or $g_{1}(t)$ has a double root (so $\delta\left(g_{1}\right)=0$ ).
(f) First note that $\delta(f) \neq 0$ : since $f$ is an irreducible polynomial over a field of characteristic zero it has no repeated roots. The action of the Galois group on $\delta(f)$ detects whether or not $G$ is contained in the alternating group. The element $\sigma=(1234) \in C_{4}$ is not in $A_{4}$ and so $\sigma(\delta(f))=-\delta(f)$, showing that $\delta(f) \notin K$.
(g) By the Galois correspondence, an intermediate field $K \subset M \subset L$ of degree 2 over $K$ corresponds to a subgroup $H$ of index 2 in $G=C_{4}$. Since $C_{4}$ is a cyclic group, it has only one subgroup of degree $e$ for any $e$ dividing 4 . In particular, it has only one subgroup of index 2 , and so there is only one intermediate field of degree 2 over $K$.
(h) We know that $\Delta(f)=\delta(f)^{2}$ and $\Delta\left(g_{1}\right)=\delta\left(g_{1}\right)^{2}$ are in $K$. Therefore the generators of $K\left(\delta\left(g_{1}\right)\right)$ and $K(\delta(f))$ satisfy degree 2 equations over $K$. The generators $\delta\left(g_{1}\right)$ and $\delta(f)$ are also not in $K$ themselves by our assumption and (f). Therefore the extensions are of degree 2 over $K$.
(i) Applying $\tau$ to $\delta\left(g_{1}\right)=a_{0}+a_{1} \delta(f)$ we get

$$
-\delta\left(g_{1}\right)=\tau\left(\delta\left(g_{1}\right)\right)=\tau\left(a_{0}+a_{1} \delta(f)\right)=a_{0}+a_{1} \tau(\delta(f))=a_{0} \pm a_{1} \delta(f)
$$

(At the moment we don't' know whether $\tau(\delta(f))=\delta(f)$ or $-\delta(f)$.) But we also know that $-\delta\left(g_{1}\right)=-\left(a_{0}+a_{1} \delta(f)\right)=-a_{0}-a_{1} \delta(f)$, and comparing these gives $-a_{0}-a_{1} \delta(f)=a_{0} \pm a_{1} \delta(f)$. Since 1 and $\delta(f)$ are a basis for $K(\delta(f))$ over $K$, this means that we have $-a_{0}=a_{0}$ (and so $a_{0}=0$ ) and $\tau(\delta(f))=-\delta(f)$ (which we don't need at the moment).
(j) Since $a_{0}=0$ this means that $\delta\left(g_{1}\right)=a_{1} \delta(f)$ with $a_{1} \in K$, and so $\delta\left(g_{1}\right) \delta(f)=$ $\left(a_{1} \delta(f)\right) \delta(f)=a_{1} \delta(f)^{2}=a_{1} \Delta(f) \in K$.
3. Let $L / K$ be a Galois extension with Galois group $G$, and $\beta$ an element of $L$. Let $S=\operatorname{Orb}_{G}(\beta)$ be the orbit of $\beta$ under $G$, say $S=\left\{\beta=\beta_{1}, \beta_{2}, \ldots, \beta_{s}\right\}$, and finally set $q(x)=\prod_{j=1}^{s}\left(x-\beta_{j}\right)$.
In this problem we will show that $q(x)$ is the minimal polynomial of $\beta$ over $K$.
(a) Explain why all the coefficients of $q(x)$ are in $K$, so that $q(x) \in K[x]$. (SuggesTION : what does acting by $G$ do to the elements of $S$ ?)

It is clear that $q(x)$ is a monic polynomial with $\beta$ as a root. Therefore to show that $q(x)$ is the minimal polynomial of $\beta$, it is sufficient to show that $q(x)$ is irreducible over $K$.
(b) Suppose that $q(x)$ factors as $q(x)=q_{1}(x) q_{2}(x)$, with each of $q_{1}, q_{2} \in K[x]$, and of degree at least one. By relabelling $q_{1}$ and $q_{2}$ if necessary, we may assume that $q_{1}(\beta)=0$. Explain why, for every $\sigma \in G, \sigma(\beta)$ is a root of $q_{1}(x)$.
(c) Show that none of the roots of $q_{2}(x)$ are in the orbit of $\beta$.
(d) Explain why the result in (c) is a contradiction, and hence that $q(x)$ must be irreducible.

## Solution.

(a) Since the set $S$ is a single orbit of $G, G$ acts on $S$ by permuting its elements. The coefficients of $q(x)$ are, up to sign, the elementary symmetric polynomials in $\beta_{1}, \ldots, \beta_{s}$. Hence any permutation leaves them unchanged, in particular, action by $G$ leaves them unchanged. Thus the coefficients are in $L^{G}=K$.
(b) We have seen this argument many times, first in the class "Automorphisms fixing a subfield" from January 20th. If $q_{1}(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ with the $a_{i} \in K$, then

$$
\begin{aligned}
0 & =\sigma(0)=\sigma\left(q_{1}(\beta)\right)=\sigma\left(\beta^{n}+a_{n-1} \beta^{n-1}+\cdots+a_{1} \beta+a_{0}\right) \\
& =\sigma(\beta)^{n}+a_{n-1} \sigma(\beta)^{n-1}+\cdots+a_{1} \sigma(\beta)+a_{0}=q_{1}(\sigma(\beta))
\end{aligned}
$$

so $\sigma(\beta)$ is a root of $q_{1}(x)$.
(c) The elements of the set $S$ are distinct, so $q(x)$ has no repeated roots. This means that $q_{1}(x)$ and $q_{2}(x)$ have no roots in common. Part (b) shows that the orbit of $\beta$ is contained in the subset of roots of $q_{1}(x)$, therefore no roots of $q_{2}(x)$ are in the orbit of $\beta$.
(d) Since $\operatorname{deg} q_{2}(x) \geqslant 1, q_{2}(x)$ must have at least one root. By construction the roots of $q(x)$ are the elements in the orbit of $\beta$, so all roots of $q_{2}(x)$ are a subset of the orbit. This contradicts (c), and shows that we could not have had the factorization $q(x)=q_{1}(x) q_{2}(x)$ over $K$ with both $q_{1}(x)$ and $q_{2}(x)$ of degree $\geqslant 1$. Therefore $q(x)$ is irreducible over $K$.

REmark. We have used the argument in part (a) before : see the proof of $(3) \Longrightarrow$ (2) on February 4th ("Galois Extensions").

