
Math 414 Answers for Homework 11

1. In this problem we will investigate solvability for a particular matrix group. For a
general group G, we say that G is solvable if G has a composition series

{e} = G0 E G1 E G2 E · · · E Gn = G

where each factor Gi/Gi−1 is an abelian group. When G is a finite group our lemma
from class shows this is the same as requiring that G has a composition series where
each factor is cyclic of prime order. For infinite groups there is no guarantee that there
are quotients of finite order, and it turns out that having factors which are abelian is
still a useful notion, which is why the definition above is the general one.

Let B be the Borel subgroup of GL2(R), i.e., B is the subgroup

B =

{[

a b
0 d

]

a, b, d ∈ R, ad 6= 0

}

of upper triangular matrices. Consider the following subgroups of B :
{[

1 0
0 1

]}

⊂

{[

1 b
0 1

]

b ∈ R

}

⊂

{[

a b
0 1

]

a, b ∈ R, a 6= 0

}

⊂ B

Show that each subgroup is normal in the next (i.e, that they form a composition series)
and that each quotient is abelian. Also, identify each quotient group (the quotients are
abelian groups which you should know, or at least be able to describe).

Solution. Let us first label the groups :

◦ B0 =

{[

1 0
0 1

]}

,

◦ B1 =

{[

1 b
0 1

]

b ∈ R

}

,

◦ B2 =

{[

a b
0 1

]

a, b ∈ R, a 6= 0

}

, and

◦ B3 = B =

{[

a b
0 d

]

a, b, d ∈ R, ad 6= 0

}

.

The group law on B1 is
[

1 b1
0 1

]

·

[

1 b2
0 1

]

=

[

1 b1 + b2
0 1

]
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In other words, the map B1 −→ R sending [ 1 b
0 1

] to b is an isomorphism of groups.

The group B0 (the identity) is normal in B1, with factor group B1/B0 = B1
∼= R.

Next, consider the map ϕ : B2 −→ R∗ given by ϕ ([ a b
0 1

]) = a. Since the multiplication
law in B2 is

[

a1 b1
0 1

]

·

[

a2 b2
0 1

]

=

[

a1a2 a1b2 + b1
0 1

]

we see that ϕ is a group homomorphism. It is also surjective, since a may be any element
of R∗. The kernel of this map is those g ∈ B2 for which ϕ(g) = 1, i.e.,

Ker(ϕ) =

{[

a b
0 1

]

a = 1

}

= B1.

Thus, B1 (being the kernel of a homomorphism) is a normal subgroup of B2, and by the
homomorphism theorem, B2/B1 = Im(ϕ) = R∗.

Similarly, define ψ : B3 −→ R∗ by ψ ([ a b

0 d
]) = d. The multiplication law in B3 is

[

a1 b1
0 d1

]

·

[

a2 b2
0 d2

]

=

[

a1a2 a1b2 + b1d2
0 d1d2

]

,

which shows that ψ is a surjective group homomorphism. The kernel of ψ is

Ker(ψ) =

{[

a b
0 d

]

d = 1

}

= B2,

so that B2 is a normal subgroup of B3, and B3/B2
∼= Im(ψ) = R∗.

Therefore,
B0 E B1 E B2 E B3 = B

is a composition series for B with composition factors B1/B0
∼= R, B2/B1

∼= R∗, and
B3/B2

∼= R∗. Since the factors are all abelian, B is a solvable group.

Alternate Solution. Alternatively, we can prove directly that each Bi−1 is normal in
Bi, and compute the quotient. The argument for B0 in B1 is unchanged, so we proceed
to B1 in B2, and start by checking that B1 is normal in B2.

For h =
[

1 b1
0 1

]

∈ B1 and g =
[

a b2
0 1

]

∈ B2 we have

ghg−1 =

[

a b2
0 1

]

·

[

1 b1
0 1

]

·

[

1

a
− b2

a

0 1

]

=

[

1 ab1
0 1

]

.

Since the conjugate ghg−1 is always in B1, we see that B1 is normal in B2.

To determine the quotient B2/B1, we look for a complete set of coset representatives.
We claim that the subset (and subgroup)

Q2 =

{[

a 1
0 1

]

a ∈ R, a 6= 0

}
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is a complete set of coset representatives. First, every coset gB1 with g ∈ B2 contains

an element of Q2. Given g = [ a b
0 1

] ∈ B2 then choosing g1 =
[

1 −
b

a

0 1

]

∈ B1 we get

g · g2 =

[

a b
0 1

]

·

[

1 − b

a

0 1

]

=

[

a 0
0 1

]

which is in Q2 and (by construction) in the coset g2B1. Second, no two elements of Q2

are in the same left B1 coset : given h1 = [ a1 0

0 1
] and h2 = [ a2 0

0 1
], trying to solve

[

a2 0
0 1

]

= h2 = h1g1 =

[

a1 0
0 1

] [

1 b
0 1

]

=

[

a1 a1b
0 1

]

gives a1 = a2 and b = 0. Finally, the group law on Q2 is
[

a1 0
0 1

]

·

[

a2 0
0 1

]

=

[

a1a2 0
0 1

]

.

This shows that the map Q2 −→ R∗ given by [ a 0
0 1 ] 7→ a is an isomorphism of groups.

Therefore B2/B1
∼= Q2

∼= R∗.

Now let’s check that B2 is normal in B3. Given h =
[

a1 b1
0 1

]

∈ B2 and g =
[

a2 b2

0 d2

]

∈ B3,
we have

ghg−1 =

[

a2 b2
0 d2

]

·

[

a1 b1
0 1

]

·

[

1

a2
− b2

a2d2

0 1

d2

]

=

[

a1
1

d2
(a2b1 − a1b2 + b2)

0 1

]

.

Since ghg−1 ∈ B2 (and since g ∈ B3 and h ∈ B2 are arbitrary), we see that B2 is normal
in B3. To understand the quotient B3/B2 we again look for a set of coset representatives.
This time we claim that the subgroup

Q3 =

{[

1 0
0 d

]

d ∈ R, d 6= 0

}

is a complete set of coset representatives for the cosets of B2 in B3. We first check that
every coset gB2 with g ∈ B3 contains an element of Q3. Given g = [ a b

0 d
] ∈ B3, choosing

g2 =
[

1

a
−

b

a

0 1

]

∈ B2 we get

gg2 =

[

a b
0 d

]

·

[

1

a
− b

a

0 1

]

=

[

1 0
0 d

]

,

so that every left coset of B2 contains an element of Q3. No two elements of Q3 are in
the same left coset of B2 : trying to solve

[

1 0
0 d2

]

=

[

1 0
0 d1

]

·

[

a b
0 1

]
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gives a = 1, b = 0, and d1 = d2. Finally, as a group Q3
∼= R∗, and so B3/B2 = Q3

∼= R∗.

We conclude as before that B0 E B1 E B2 E B3 is a composition series with abelian
quotients.

2. In this problem we will prove part (b) of the lemma on radical extensions from class.
That is, we will show that ifM is a field of characteristic zero which contains a primitive
m-th root of unity ζ , and β and element such that βm ∈M , then the extensionM(β)/M
is Galois with abelian Galois group.

Set γ = βm. Then β is a root of f(x) = xm − γ ∈M [x].

(a) Find the roots of f and explain why they are all in M(β). (Hint: Don’t forget
that ζ ∈M .)

(b) Let q(x) be the minimal polynomial polynomial of β over M . Explain why q(x) |
f(x).

(c) Explain why q(x) splits completely in M(β).

(d) Explain why M(β)/M is a Galois extension.

Let G = Gal(M(β)/M). Since β is a generator of M(β)/M , to understand how σ ∈ G
acts on M(β) it is enough to understand what σ does to β.

(e) Explain why σ(β) = β · ζn for some n ∈ {0, . . . , m− 1}.

Let us use σn to name an element such that σn(β) = β · ζn. (So σ3(β) = β · ζ3,
σ4(β) = β · ζ4, σ0(β) = β · ζ0 = β, etc.) Note we are not claiming that σn ∈ G for every
possible n, just that this gives a consistent way of giving a name to the elements of G.

(f) Suppose that σn1
, σn2

∈ G. Show that σn1
σn2

= σn2
σn1

by computing what each
side does to β. (Hint: ζ is in M .)

Since σn1
and σn2

were arbitrary, this means that G is abelian, proving this part of the
lemma.

Solution.

(a) The roots of f are β, β · ζ , β · ζ2,. . . , β · ζm−1. Since ζ ∈M and β ∈ M(β), all of
the roots are in M(β).

(b) One of the properties of the minimal polynomial of β over M is that it divides
any other polynomial with coefficients in M with β as a root. Since f(x) ∈ M [x]
and f(β) = 0 we then have q(x) | f(x).
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(c) Since q(x) | f(x) the roots of q(x) are a subset of the roots of f(x). Since all the
roots of f(x) are in M(β) (by part (a)), all the roots of q(x) are in M(β), so q(x)
splits completely in M(β).

(d) M(β) is generated over M by β, with minimal polynomial q(x). By part (c) q(x)
splits completely in M(β) and so M(β)/M is a normal extension. Since we are in
characteristic zero, separability is automatic, and therefore M(β)/M is a Galois
extension.

(e) Given any σ ∈ G, σ(β) is a root of q(x). From parts (a) and (c) we see that
the roots of q(x) are all of the form β · ζn for some n ∈ {0, . . . , m − 1}. Thus
σ(β) = β · ζn for some n, 0 6 m 6 m− 1.

(f) Since ζ ∈M , σ(ζ) = ζ for all σ ∈ G. Therefore

σn1
σn2

(β) = σn1
(σn2

(β)) = σn1
(β·ζn2) = σn1

(β)·σn1
(ζn2) = (β·ζn1)·ζn2 = β·ζn1+n2 .

Similarly, σn2
(σn1

(β)) = β · ζn1+n2.

Remark. The proof actually shows that G is isomorphic to a subgroup of Z/mZ (the
subgroup being whichever n show up as σn ∈ G). Since every subgroup of a cyclic group
is cyclic, we conclude that G is cyclic. That is, the proof shows that Gal(M(β)/M) is
a cyclic group, and not just abelian.

3. In this problem we will see what the general constructions from class mean in two
examples we have already computed. In each of the examples we had K = Q, and L the
splitting field of a polynomial of the form f(x) = xm − γ, with γ ∈ K (i.e, in γ ∈ Q).

(a) On February 22nd and 24th (“An example”, and “An example continued”) we
computed the Galois group of the splitting field of f(x) = x3−2. (The answer was

that the Galois group is S3 = D3.) Let L be this splitting field, i.e., L = Q(2
1

3 , ω)

where ω = e
2πi

3 . The tower of fields

Q ⊂ Q(ω) ⊂ Q(ω, 2
1

3 ) = L

is a radical tower. Identify the subgroups of Gal(L/K) corresponding to each of
the fields in the tower, and compute the factors of the resulting composition series.
(By our lemma from class, they should all be abelian.)

(b) On February 26th (“A more complicated example”) we computed the Galois group
of the splitting field of f(x) = x4 − 5. (The answer was that the Galois group is

D4.) Let L = Q(5
1

4 , i) be the splitting field. The tower of fields

Q ⊂ Q(i) ⊂ Q(i, 5
1

4 ) = L
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is a radical tower. Identify the subgroups of Gal(L/K) belonging to each of the
fields in the tower, and compute the factors of the resulting composition series.
(They should again all be abelian.)

In this question you can freely use the details we computed in class (e.g., the Galois
correspondence) — there is no need to work it out again from scratch.

Solution.

(a) In class we had found the following generators of the Galois group :

α

αω

αω2

τ

ω ω2

and

α

αω

αω2

σ

ω ω2

.

(As a reminder, τ was complex conjugation, and we constructed σ using the lifting
lemma.)

Q

Q(ω)

L

2

3

The tower of field extensions is shown to the right. Let H ⊂ G be
the Galois group associated to the intermediate field Q(ω), i.e., H =
Gal(L/Q(ω)). From the tower we see that |H| = 3. Since σ fixes ω,
σ ∈ H , and since σ has order e, we conclude that H = 〈σ〉 = {IdL, σ, σ

2}.

The associated composition series is {IdL} E H E G with composition
factors H/{IdL} = H = C3 and G/H = C2. (Since G/H has order 2,
this is the only possibility for the quotient.)

(b) In class we found the following generators for the Galois group :

α−α

iα

−iα

i −i

τ

and

α−α

iα

−iα

i −i

σ

.
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In this example, τ was again complex conjugation, and σ constructed
from the lifting lemma.

Q

Q(i)

L

2

4

The tower of field extensions is shown to the right. Let H ⊂ G
be the Galois group associated to the extension Q(i). From the
tower we see that |H| = 4. Since σ ∈ H , and since σ has order
4, we have H = 〈σ〉 = {IdL, σ, σ

2, σ3}.

Therefore we have the composition series {IdL} E H E G with
composition factors H/{IdL} = H = C4 and G/H = C2.

The composition factors are all cyclic, as predicted by the lemma from class.
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