
Math 414 Answers for Homework 12

1. In this problem we will check that xn − x− 1 has Galois group Sn (i.e, the splitting
field of xn − x− 1 has Galois group Sn over Q) for n = 2, 3, and 4.

(a) Show the case n = 2.

For n = 3, 4 you may assume xn − x − 1 is irreducible, without proving it. (Although
proving it for n = 3 is something we know how to do.)

(b) Show the case n = 3.

(c) Show the case n = 4.

Reminders : () We have algorithms for computing the Galois groups of irreducible
polynomials. () The formula for the discriminant of a cubic is in H9 Q2. () given a
quartic f = x4 + bx3 + cx2 + dx + e then the resolvent cubic of f is p(t) = t3 − ct2 +
(bd− 4e)t+ (4ce− d2 − b2e). () The discriminant of a quartic polynomial is the same
as the discriminant of its resolvent cubic.

Solution.

(a) The discriminant of x2 − x − 1 is 1 − 4(1)(−1) = 5, and
√
5 6∈ Q. Therefore

x2 − x− 1 is irreducible over Q and the splitting field of x2 − x − 1 has degree 2
over Q. As we have seen (when the characteristic isn’t 2), every degree 2 extension
is a Galois extension, with Galois group Z/2Z = S2.

(b) Let f = x3 − x − 1, then ∆(f) = −23, and δ(f) =
√
−23 6∈ Q. Therefore the

Galois group of L/Q is S3 (as opposed to C3).

(c) Now let f = x4 − x − 1. Then ∆(f) = −283, and so δ(f) =
√
−283 6∈ Q.

The resolvent cubic of f is p(t) = t3 + 4t − 1. The resolvent cubic is irreducible
over Q. (Here are two ways to see that p(t) is irreducible over Q. One, p(t)
has no roots in F7, and hence is irreducible. Two, p(6) = 239 is prime, and
6 > max{|4/1|, | − 1/1|}+ 2 = 6.) By our algorithm, this means that the Galois
group is S3.

2. In this question we will investigate the norm in quadratic extensions. Let d be an
integer which isn’t a square, and set L = Q(

√
d).

(a) Let γ = a + b
√
d ∈ L, with a, b ∈ Q. Write out the 2 × 2 matrix for the map

“multiplication by γ” and compute its determinant. I.e., compute NL/Q(γ).
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(b) L/Q is a Galois extension of degree 2, with Galois group G = Z/2Z = C2. Let τ be
the nontrivial element of G. How does τ act on L? (You don’t have to prove your
answer, we already did that in H4 Q3, you just need to recall it for use below.)

(c) Given γ = a+ b
√
d as above, compute γ · τ(γ), i.e., compute NL/Q(γ) according to

the alternate formula in Galois extensions.

For the rest of the question let us consider the case d = 3, and set γ = 2 +
√
3.

(d) Check that NL/Q(γ) = 1.

(e) Explain why NL/Q(γ
n) = 1 for all n > 1.

(f) Compute γ2 and γ3, and check directly that their norms are 1.

(g) Prove that the equation x2 − 3y2 = 1 has infinitely many solutions in positive
integers x, y.

(h) Is there a+ b
√
3 ∈ Q(

√
3) such that γ = (a+ b

√
3)/τ(a+ b

√
3)? (You don’t have

to find such a, b, but you do have to argue whether such a, b exist.)

Solution.

(a) since 1,
√
d is a basis of Q(

√
d) over Q, and (a + b

√
d) · 1 = a + b

√
d, and

(a + b
√
d) ·

√
d = bd + a

√
d, the matrix for multiplication by γ = a + b

√
d (with

a, b ∈ Q) is
[

a bd
b a

]

,

which has determinant a2 − db2, so NL/Q(a + b
√
d) = a2 − db2.

(b) By H4 Q3, if a, b ∈ Q then τ(a + b
√
d) = a− b

√
d.

(c) Therefore, if γ = a+b
√
d with a, b ∈ Q, γ ·τ(γ) = (a+b

√
d) · (a−b

√
d) = a2−db2,

just as in part (a).

(d) Since d = 3, we have NL/Q(a + b
√
3) = a2 − 3b2. Therefore if γ = 2 + 1 ·

√
3,

NL/Q(γ) = 23 − 3 · 12 = 4− 3 · 1 = 1.

(e) The norm is multiplicative, for any α, β ∈ L, NL/Q(αβ) = NL/Q(α) · NL/Q(β).
Therefore for all n > 1 (and even all n ∈ Z) we have NL/Q(γ

n) =
(

NL/Q(γ)
)n

=
1n = 1.
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(f) We have

γ2 = (2 +
√
3) · (2 +

√
3) =

(

4 +
√
3
2
)

+ 2 · 2 · 1
√
3 = 7 + 4

√
3, and

γ3 = γ2 · γ = (7 + 4
√
3) · (2 +

√
3)

= (7 · 2 + 4 · 1 · 3) + (7 · 1 + 4 · 2)
√
3 = 26 + 15

√
3.

Their norms are

NL/Q(7 + 4
√
3) = 72 − 3 · 42 = 49− 3 · 16 = 49− 48 = 1, and

NL/Q(26 + 15
√
3) = 262 − 3 · 152 = 676− 3 · 225 = 676− 675 = 1,

just as part (e) guarantees.

(g) For each n > 1 define rational numbers xn and yn by the formula xn+yn
√
3 = γn.

I.e., xn and yn are the coefficients of 1 and
√
3 respectively when expressing γn in

the basis 1,
√
3 of L over Q. So, for example, (x1, y1) = (2, 1), (x2, y2) = (7, 4),

and (x3, y3) = (26, 15).

By parts (e) and (a) we have 1 = NL/Q(γ
n) = NL/Q(xn + yn

√
3) = x2

n − 3y2n for
all n > 1. Therefore if we show that xn and yn are always positive integers, and
always different pairs of positive integers, we will have shown that x2 − 3y2 = 1
has infinitely many different solutions in positive integers.

One way to see this is to note that since

xn+1+yn+1

√
3 = γn+1 = γn ·γ = (xn+yn

√
3)·(2+

√
3) = (2xn+3yn)+(xn+2yn)

√
3

we have the recursions xn+1 = 2xn + 3yn and yn+1 = xn + 2yn. Starting with
(x1, y1) = (2, 1) the recursions show that xn+1, yn+1 are always positive integers,
and increasing. Since they are increasing, they must all be different.

A similar argument is that since α ≈ 3.732050808 . . . > 1, we see that the sequence
{γn}n>1 is a strictly increasing sequence of real numbers, and so are all distinct.
Since the (xn, yn) is the coefficients of γn in a basis for L over Q, these coefficients
must also all be distinct. We then need to see that they are all positive integers.
Using the binomial theorem we have

xn + yn
√
3 = γn = (2 +

√
3)n =

n
∑

m=0

(

n

m

)

2n−m
(√

3
)m

So that

xn =

n
∑

m=0
m even

(

n

m

)

2n−m
(√

3
)m

and yn =

n
∑

m=1
m odd

(

n

m

)

2n−mm
(√

3
)m−1

.

These explicit expressions show that xn and yn are positive integers (since each of
the terms we are adding are positive integers).
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(h) Since NL/Q(γ) = 1, and since Gal(L/Q) is a cyclic group generated by τ , Hilbert’s
Theorem 90 tells us that there is a β ∈ L, β 6= 0, such that γ = β/τ(β). Since
β ∈ L we can write β = a + b

√
3 for some a, b ∈ Q, and therefore the answer to

the question is yes — there are nonzero a, b ∈ Q so that γ = a+b
√
3

τ(a+b
√
3)
.

Explicitly, β = 3 +
√
3 is such an element since

3 +
√
3

τ(3 +
√
3)

=
3 +

√
3

3−
√
3
=

(

3 +
√
3

3−
√
3

)

·
(

3 +
√
3

3 +
√
3

)

=
(3 · 3 + 1 · 3) + (2 · 3 · 1)

√
3

9− 3
=

12 + 6
√
3

6
= 2 +

√
3.

Such a β is unique up to multiplying by a nonzero element of Q, and so the solution
above is the “smallest” possible β with positive integer coefficients.

3. Suppose that K is a field of characteristic zero, and that f(x) ∈ K[x] is an irreducible
polynomial of degree 4 with splitting field L. Further suppose that G = Gal(L/K) = A4.
The purpose of this question is to write down all the intermediate fields of L/K, without
having a concrete polynomial to work with. The idea is to demonstrate that the Galois
group not only controls the “shape” of the diagram of intermediate fields (since this
lattice is the reverse of the subgroup lattice), but that once the Galois group is fixed,
there are “universal formulae” for these intermediate fields.

Let α1, α2, α3, and α4 be the four roots of f , and γ12|34, γ13|24, and γ14|23 the three roots
of the resolvent cubic g, as described in class.

(a) List and name the subgroups of A4. You should have four subgroups of order 3,
one subgroup of order 4, and three subgroups of order 2.

(By “name” I mean : if the subgroup has a well-known name that we’ve seen before, use
that, if not give it your own name [e.g., “H7”], whatever name you want, so that below
when we match intermediate fields to subgroups you’ll have a way to describe which
subgroup, something better than “the third subgroup on the list from part (a)...”.)

(b) Find the fixed fields associated to the subgroups of order 3 (this should be fairly
easy).

(c) Find the fixed field of the subgroup of order 4.

(d) Explain why K(γ12|34) = K(γ13|24) = K(γ14|23). (An indirect argument is best,
and there is more than one possible such argument.)
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(e) And now the challenge problem: find the fixed fields for the groups of order 2.
Explain your answer, and your reasoning, as clearly as you can.

Solution.

(a) Besides A4 and {IdL} the subgroups of A4 are :

Subgroups of order 3
H1 = 〈(2 3 4)〉; H2 = 〈(1 3 4)〉; H3 = 〈(1 2 4)〉; H4 = 〈(1 2 3)〉.

Subgroup of order 4
V = {IdL, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}

Subgroups of order 2
H12|34 = {IdL, (1 2)(3 4)}; H13|24 = {IdL, (1 3)(2 4)}; H14|23 = {IdL, (1 4)(2 3)}.

For use in the rest of the question, here is the reversed lattice of subgroups of A4.

{IdL}

A4

V

H12|34 H13|24 H14|23

H1 H2 H3 H4

3

2
2

2

2
2

2

4

4 4

4

3

3 3

3

To see that these are all the subgroups, we make the following observations. Since
|A4| = 12, the size of any subgroup has to divide 12. Subgroups of orders 2 and 3
must be cyclic, generated by elements of order 2 and 3. Listing all the elements of
orders 2 and 3 in A4 gives the subgroups of orders 2 and 3 above. (Note: Different
elements of order 2 generate different subgroups. However, if σ is of order 3 then
so is σ2 = σ−1, and σ and σ−1 generate the same subgroup.) Any group of order 4
is either cyclic generated by an element of order 4, or the Klein four-group, where
all elements other than the identity are of order 2. The group A4 has no elements
of order 4, so the first possibility is out. However, A4 does have three elements
of order 2, and together with the identity give V . The remaining divisor of 12
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(other than 1 and 12) is 6. Any group of order 6 has an element of order 2 and an
element of order 3. However, direct calculation shows that in A4, any elements of
order 2 and order 3 generate all of A4, so there is no subgroup of order 6.

(b) A subgroup of A4 of order 3 corresponds to an extension of Q of degree 12
3
= 4.

We started with an irreducible degree 4 equation f with four roots. Each of those
roots generates a degree 4 extension. We can now check that these are all the
degree 4 extensions of Q in L.

The root α1 is fixed by H1 (H1 acts by α2 7→ α3 7→ α4 7→ α2), and therefore
K(α1) ⊆ LH1 . Since both K(α1) and LH1 have degree 4 over K, we conclude that
LH1 = K(α1).

Similarly, LH2 = K(α2), L
H3 = K(α3), and LH4 = K(α4). Since H1,. . . , H4 are all

the subgroups of index 4 in A4, K(α1),. . . , K(α4) are all the degree 4 extensions of
K contained in L. (They are also distinct degree 4 extensions, since the subgroups
H1,. . . , H4 are all different.)

(c) The fixed field corresponding to V has degree 12
4

= 3 over K. Since the Galois
group is A4, our algorithm for Galois groups of irreducible quartics tells us that
the resultant cubic p(t) is irreducible over K. Therefore each of its roots give a
degree 3 extension of K.

The root γ12|34 is fixed by V , and so K(γ12|34) ⊆ LV . Since both fields have degree
3 over K, we conclude that K(γ12|34) = LV .

(d) The argument in (c) works just as well for γ13|24 and γ14|23 and shows thatK(γ13|24) =
LV and K(γ14|23) = LV , and therefore we have that K(γ12|34) = K(γ13|24) =
K(γ14|23).

Another versions of the same argument is to note that K(γ12|34), K(γ13|24), and
K(γ14|23) are degree 3 extensions of K, and so correspond to subgroups of A4 with
index 3, i.e., subgroups of A4 with 4 elements. Since A4 only has one subgroup
with 4 elements, and since the Galois correspondence is a bijection, these fields
must be the same.

(e) To solve this question let us first write down what we can observe from the groups
and the Galois correspondence. We will use H12|34 as an example, but similar
reasoning applies to the other groups.

◦ Since H12|34 is a normal subgroup of V of index 2 , LH12|34 is a Galois extension
of LV of degree 2, with Galois group V/H12|34 ∼= C2.

◦ As long as Char 6= 2, any quadratic extension is obtained by adding an
element which the nontrivial element of the Galois group sends to its negative.
(E.g., Q2(b) of this assignment, H4 Q3, many examples in class.)

6



Therefore LH12|34 is obtained by adjoining a single element to LV . That el-
ement must be fixed by H12|34 and sent to its negative by the nontrivial el-
ement of V/H12|34. (Since the cosets of H12|34 in V are {IdL, (1 2)(3 4)} and
{(1 3)(2 4), (1 4)(2 3)}, this is the same as asking the element we are adjoining
to be sent to its negative by (1 3)(2 4) and (1 4)(2 3).) Let us look for such an
element.

After thinking for a bit, here are two natural candidates :

δ12|34 = (α1 + α2)− (α3 + α4) or
ǫ12|34 = α1α2 − α3α4.

From their descriptions, we see that both are fixed by (1 2)(3 4), and both are
sent to their negatives by (1 3)(2 4) and (1 4)(2 3). At this point there are also
two natural questions :

Q1 : How do we know that these elements aren’t zero? (Being zero is compatible
with the two properties above, but adjoining zero isn’t going to get us anywhere).

Q2 : If neither are zero, which one do we pick?

Here are the answers.

A1 : First suppose that δ12|34 = 0, i.e., that α1 + α2 = α3 + α4. Acting by
(1 2 3) ∈ A4 gives α2 +α3 = α1 + α4. Adding these two together gives α1 +2α2 +
α3 = α1 + α3 + 2α4, or 2α2 = 2α4, and so (since Char 6= 2) α2 = α4. But f(x) is
an irreducible quadratic equation in characteristic zero, so it must have distinct
roots. This contradiction shows that δ12|34 6= 0.

Similarly, suppose that ǫ12|34 = 0, or α1α2 = α3α4. Acting by (1 2 3) gives α2α3 =
α1α4, and multiplying these gives α1α

2
2α3 = α1α3α

2
4 or (since none of the roots of

f(x) are zero) α2
2 = α2

4. Acting by (1 3 4) gives α2
2 = α2

1, and acting once more
by (1 3 4) gives α2

2 = α2
3. Thus α2

1 = α2
2 = α2

3 = α2
4. Set c = α2

1, then α1 = ±√
c,

α2 = ±√
c, α3 = ±√

c, and α4 = ±√
c, and this implies some of the roots must be

the same (there are only two possibilities for the sign, and four roots — at least
two of them must share the same sign). This is again a contradiction (as above
the roots of f(x) are distinct) and shows that ǫ12|34 6= 0.

A2 : It doesn’t matter — both generate the same extension. Each of δ12|34 and ǫ12|34
are in LH12|34 but not in LV (since they are each fixed by H12|34 but not fixed by V ).
Thus LV (δ12|34) and LV (ǫ12|34) are nontrivial extensions of L

V contained in LH12|34 .
Since [LH12|34 : LV ] = [V : H12|34] = 2, there is not much room for a nontrivial
extension! The only possibility is LV (δ12|34) = LH12|34 and LV (ǫ12|34) = LH12|34 , i.e.,
they both generate the same extension.
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We can actually be more precise : since δ12|34 and ǫ12|34 are each sent to their
negatives by the nontrivial element of V/H12|34, they must be scalar multiples of
each other, with the scalar coming from LV (Challenge : Can you find such an
element?)

Thus, LH12|34 = LV (δ12|34) = K(γ12|34, δ12|34) and LH12|34 = LV (ǫ12|34) = K(γ12|34, ǫ12|34).

Note that δ12|34 and ǫ12|34 are not the only possibilities we could add. Any nonzero
element of L which is fixed by (1 2)(3 4) and sent to its negative by (1 3)(2 4)
(and so also by (1 4)(2 3)) will do. E.g., α2

1+α2
2−α2

3−α2
4, if nonzero, would work.

Identical arguments, with permuted notation, work for H13|24 and H14|23, so for
example

LH13|24 = K(γ13|24, α1 + α3 − α2 − α4) = K(γ13|24, α1α3 − α2α4), and

LH14|23 = K(γ14|23, α1 + α4 − α2 − α3) = K(γ14|23, α1α4 − α2α3).

Setting M = K(γ12|34) = K(γ13|24) = K(γ14|23), δ13|24 = α1 + α3 − α2 − α4, and
δ14|23 = α1 + α4 − α2 − α3, the lattice of intermediate fields is :

L

K

M

M(δ12|34) M(δ13|24) M(δ14|23)

K(α1) K(α2) K(α3) K(α4)

3

2
2

2

2 2 2

4

4 4

4

3

3 3

3
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