1. Let A be a ring (i.e., a commutative ring) which is a domain and has finitely many elements. In this problem we will show that A is a field. Let $a \in A, a \neq 0$ be an element.
(a) Consider the map $\varphi_{a}: A \longrightarrow A$ given by multiplying by a (i.e, $\varphi_{a}(b)=a b$ for all $b \in A$), and show that this map is injective.
(b) Since A is finite, explain why φ_{a} must also be surjective.
(c) Explain why there must be an element $b \in A$ such that $a b=1$.
(d) Explain why A is a field.
2. Let $K \subseteq L$ be fields, and S_{1} and S_{2} two subsets of L. If we adjoin S_{1} to K we get the field $K\left(S_{1}\right)$, and we could then adjoin S_{2} to get the field $\left(K\left(S_{1}\right)\right)\left(S_{2}\right)$. Show that this field is the same as $K\left(S_{1} \cup S_{2}\right)$, obtained by adjoining the union of S_{1} and S_{2}.

Suggestion: Use the defining properties of "field obtained by adjoining elements" to show that each of the fields is contained in the other.
3. Show that $\mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$. (Hint: One inclusion should be obvious, and the other should follow after a little algebra.)
4. In our argument that $\{a+b \sqrt[3]{2}+c \sqrt[3]{4} \mid a, b, c \in \mathbb{Q}\}$ is a field we needed to use the identity

$$
(a+b \sqrt[3]{2}+c \sqrt[3]{4}) \cdot\left(\left(a^{2}-2 b c\right)+\left(2 c^{2}-a b\right) \sqrt[3]{2}+\left(b^{2}-a c\right) \sqrt[3]{4}\right)=a^{3}+2 b^{3}+4 c^{3}-6 a b c
$$

to "get the cube roots out of the denominator". There is a gap in this argument not addressed in class : if a, b, and c are such that $a+b \sqrt[3]{2}+c \sqrt[3]{4} \neq 0$, how do we know that $a^{3}+2 b^{3}+4 c^{3}-6 a b c \neq 0$? (That's something we can't allow in a denominator.)
In this question we will justify that assertion, although we will assume something that we haven't proven yet : that $1, \sqrt[3]{2}$ and $\sqrt[3]{4}$ are linearly independent over \mathbb{Q}. You may assume this for the question.
Let $\gamma=a+b \sqrt[3]{2}+c \sqrt[3]{4}$ be an element of $\mathbb{Q}(\sqrt[3]{2})$, with $a, b, c \in \mathbb{Q}$, and consider the map $\varphi: \mathbb{Q}(\sqrt[3]{2}) \longrightarrow \mathbb{Q}(\sqrt[3]{2})$ given by multiplication by γ.
(a) Prove that φ is a \mathbb{Q}-linear map.
(b) Write out the matrix for this map in the \mathbb{Q}-basis $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$.
(c) Compute the determinant of this matrix.
(d) If $\gamma \neq 0$, explain why $a^{3}+2 b^{3}+4 c^{3}-6 a b c \neq 0$.

Note: We will soon have a different way of showing that the set $\{a+b \sqrt[3]{2}+c \sqrt[3]{4} \mid a, b, c \in \mathbb{Q}\}$ is a field, without needing the identity above, and without needing to prove that $a^{3}+2 b^{3}+4 c^{3}-6 a b c \neq 0$ whenever $\gamma \neq 0$. The computation is still useful however, and we will come back to the meaning of the determinant later in the course.

