1. Let $f(x)=x^{3}+3 x^{2}+3 x-1 \in \mathbb{Q}[x]$.
(a) Find the remainder of x^{4} when divided by $f(x)$.
(b) Find the reminder of $\left(x^{2}+1\right)^{3}$ when divided by $f(x)$.
(c) Find polynomials $u(x), v(x) \in \mathbb{Q}[x]$, with $\operatorname{deg}(u(x)) \leqslant 2$ which solve

$$
x^{2} \cdot u(x)+v(x) f(x)=1
$$

2. Let α be the real number $\alpha=2^{1 / 3}-1$. To as many decimal places as you can (well, at least 8 , and no more than 20), evaluate the following real numbers:
(a) α^{4};
(b) $\left(\alpha^{2}+1\right)^{3}$;
(c) $1 / \alpha^{2}$;
(d) $3 \alpha^{2}+10 \alpha+12$;
(e) $24 \alpha^{2}+60 \alpha-16$;
(f) $6 \alpha^{2}+10 \alpha-3$.

Now,
(g) explain why some of the numbers this question were the same (question 1 may help).
3. In this question we will show that $f(x)=x^{4}-10 x^{2}+1$ is the minimal polynomial of $\sqrt{2}+\sqrt{3}$ over \mathbb{Q}. Let $q(x) \in \mathbb{Q}[x]$ be the (at the moment unknown) minimal polynomial of $\sqrt{2}+\sqrt{3}$ over \mathbb{Q}. It is easy to check that $f(\sqrt{2}+\sqrt{3})=0$, which implies that $q(x) \mid f(x)$. To show that $q(x)=f(x)$ we may therefore show either that $f(x)$ is irreducible in $\mathbb{Q}[x]$ or that $\operatorname{deg}(q(x))=4$.
We will use equality $\mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$, proved in the last homework assignment to show that $\operatorname{deg}(q(x))=4$.
(a) Using the chain of field extensions $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$ explain why $\operatorname{deg}(q(x))$ must be even.

Since $\operatorname{deg}(q(x)) \leqslant 4$, this means that we must have $\operatorname{deg}(q(x))=2$ or 4 . We now assume that $\operatorname{deg}(q(x))=2$ and show how this leads to a contradiction.
(b) Explain why $\operatorname{deg}(q(x))=2$ implies that $\mathbb{Q}(\sqrt{2})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$, and similarly that $\mathbb{Q}(\sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$.
(c) Part (b) gives us $\mathbb{Q}(\sqrt{2})=\mathbb{Q}(\sqrt{3})$, and if so we would be able to write $\sqrt{3}=a+b \sqrt{2}$ with $a, b \in \mathbb{Q}$. Square both sides and show how this would lead to a contradiction. (Do not forget to deal with the special cases $a=0$ or $b=0$.)

Thus (after finishing (c)) we conclude that $f(x)$ is the minimal polynomial of $\sqrt{2}+\sqrt{3}$ over \mathbb{Q}. Let us also try the other method of showing that $f(x)$ is the minimal polynomial : showing that $f(x)$ is irreducible over \mathbb{Q}.
(d) Use one of the irreducibility tests from class to show that $f(x)$ is irreducible over \mathbb{Q}. (There is more than one that will work.)
4. In this question we will explore some aspects of numbers algebraic over a fixed field.
(a) Suppose that $K \subseteq M$ is a field extension, with $[M: K]=d$ (in particular, the degree of the extension is finite). Show that every $\alpha \in M$ is algebraic over K, and satisfies a polynomial of degree $\leqslant d$. (Suggestion: Can $1, \alpha, \ldots, \alpha^{d}$ be linearly independent over K ?)
(b) Let $K \subseteq L$ be a field extension, and $\alpha, \beta \in L$. If β is algebraic over K, show that β is algebraic over $K(\alpha)$.
(c) If $\alpha, \beta \in L$ are both algebraic over K, show that $[K(\alpha, \beta): K]$ is finite.
(d) If $\alpha, \beta \in L$ are algebraic over K with $\beta \neq 0$, show that $\alpha+\beta, \alpha \beta$, and α / β are algebraic over K
(e) Consider the set $\overline{\mathbb{Q}}=\{\alpha \in \mathbb{C} \mid \alpha$ is algebraic over $\mathbb{Q}\}$. Show that $\overline{\mathbb{Q}}$ is a field.
(f) Are there irreducible polynomials in $\mathbb{Q}[x]$ of arbitrarily large degree?
(g) Is $[\overline{\mathbb{Q}}: \mathbb{Q}]$ finite or infinite?
(h) Does the converse to (a) hold? I.e., if $K \subseteq M$ is a field extension such that every $\alpha \in M$ is algebraic over K, does this imply that $[M: K]$ is finite?

