1. Let $K \subseteq L$ be fields, and $\alpha \in L$. We understand the structure of $K(\alpha)$ when α is algebraic over K. In this question we will deal with the case that α is transcendental over K.

Suppose that α is transcendental over K and let $\varphi_{\alpha}: K[x] \longrightarrow L$ be the evaluation map sending $f(x) \in K[x]$ to $f(\alpha) \in L$. Recall that this is a ring homomorphism.
(a) Explain why φ_{α} is injective.
(b) Explain how to use φ_{α} to get a homomorphism of fields $K(x) \longrightarrow L$. (SugGesTION: It is just like our argument that \mathbb{Q} is a subfield of every field of characteristic 0 , starting from the point where we know that \mathbb{Z} is a subring of every such field.)
(c) Prove that $K(\alpha) \cong K(x)$.
(d) Are $\mathbb{Q}(\pi)$ and $\mathbb{Q}(e)$ isomorphic fields? (Here $\pi \cong 3.14159265 \ldots$ and $e \cong 2.718281828 \ldots$ are the usual numbers we know.)
2. Let p be a prime, n a positive integer, and write $n=m p^{k}$ with $p \nmid m$. For any a, $0 \leqslant a \leqslant n$, prove that

$$
\binom{n}{a} \equiv\left\{\begin{array}{cll}
0 & \bmod p & \text { if } p^{k} \nmid a \\
\binom{m}{\frac{a}{p^{k}}} & \bmod p & \text { if } p^{k} \mid a
\end{array}\right.
$$

(Suggestion: Consider $(x+1)^{n} \bmod p$, i.e, in \mathbb{F}_{p}.)
3. Let K be a field with $\operatorname{Char}(K) \neq 2$ and suppose that L / K is a degree 2 extension. By the argument in class, that means we can express L as $K(\sqrt{\gamma})$ for some $\gamma \in K$. In class we showed that L / K must be a normal extension.
(a) Show that L / K is also a separable extension.
(b) Compute $\operatorname{Aut}(L / K)$ and describe how each element of the group acts on L.
4. In class we saw that if K is field and $q(x) \in K[x]$ an irreducible polynomial such that $q^{\prime}(x) \neq 0$, then $q(x)$ had no repeated roots. Prove a slightly more general version of this result : show that $f(x) \in K[x]$ has no repeated roots if and only if $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)=1$.
5. For each of the following polynomials f_{i}, let L_{i} be the field generated by \mathbb{Q} and all the roots of f_{i}. That is, if $\alpha_{1}, \ldots, \alpha_{r}$ are the roots of f_{i}, let $L_{i}=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{s}\right)$. (In other words, L_{i} is the splitting field of each f_{i}.) In each case find all the roots of f_{i}, and find the degree of L_{i} over \mathbb{Q}.
(a) $f_{1}=x^{4}-5 x^{2}+6$.
(b) $f_{2}=x^{3}-1$.
(c) $f_{3}=x^{6}-1$.
(d) $f_{4}=x^{6}-2$.

