1. Let $K \subseteq L$ be fields, and $\alpha \in L$. We understand the structure of $K(\alpha)$ when α is algebraic over K. In this question we will deal with the case that α is transcendental over K.

Suppose that α is transcendental over K and let $\varphi_{\alpha} \colon K[x] \longrightarrow L$ be the evaluation map sending $f(x) \in K[x]$ to $f(\alpha) \in L$. Recall that this is a ring homomorphism.

- (a) Explain why φ_{α} is injective.
- (b) Explain how to use φ_{α} to get a homomorphism of fields $K(x) \longrightarrow L$. (SUGGES-TION: It is just like our argument that \mathbb{Q} is a subfield of every field of characteristic 0, starting from the point where we know that \mathbb{Z} is a subring of every such field.)
- (c) Prove that $K(\alpha) \cong K(x)$.
- (d) Are $\mathbb{Q}(\pi)$ and $\mathbb{Q}(e)$ isomorphic fields? (Here $\pi \cong 3.14159265...$ and $e \cong 2.718281828...$ are the usual numbers we know.)

2. Let p be a prime, n a positive integer, and write $n = mp^k$ with $p \nmid m$. For any a, $0 \leq a \leq n$, prove that

$$\binom{n}{a} \equiv \left\{ \begin{array}{cc} 0 & \mod p & \text{if } p^k \nmid a \\ \left(\begin{array}{c} m \\ \frac{a}{p^k} \end{array} \right) & \mod p & \text{if } p^k \mid a. \end{array} \right.$$

(SUGGESTION: Consider $(x+1)^n \mod p$, i.e, in \mathbb{F}_p .)

3. Let K be a field with $\operatorname{Char}(K) \neq 2$ and suppose that L/K is a degree 2 extension. By the argument in class, that means we can express L as $K(\sqrt{\gamma})$ for some $\gamma \in K$. In class we showed that L/K must be a normal extension.

- (a) Show that L/K is also a separable extension.
- (b) Compute $\operatorname{Aut}(L/K)$ and describe how each element of the group acts on L.

4. In class we saw that if K is field and $q(x) \in K[x]$ an irreducible polynomial such that $q'(x) \neq 0$, then q(x) had no repeated roots. Prove a slightly more general version of this result : show that $f(x) \in K[x]$ has no repeated roots if and only if gcd(f(x), f'(x)) = 1.

5. For each of the following polynomials f_i , let L_i be the field generated by \mathbb{Q} and all the roots of f_i . That is, if $\alpha_1, \ldots, \alpha_r$ are the roots of f_i , let $L_i = \mathbb{Q}(\alpha_1, \ldots, \alpha_s)$. (In other words, L_i is the *splitting field* of each f_i .) In each case find all the roots of f_i , and find the degree of L_i over \mathbb{Q} .

- (a) $f_1 = x^4 5x^2 + 6$.
- (b) $f_2 = x^3 1$.
- (c) $f_3 = x^6 1$.
- (d) $f_4 = x^6 2$.