1. Let L/K be a finite extension and $G = \operatorname{Aut}(L/K)$. Even if L/K is not a Galois extension we always have order-reversing maps of lattices

 $\begin{cases} \text{lattice of subgroups } H \text{ of } G \end{cases} \xrightarrow[Aut(L/M)]{} \swarrow M \end{cases} \begin{cases} \text{lattice of intermediate fields } M \end{cases}$

However, if L/K is not a Galois extension, there is no reason that these maps have to be bijections. In this problem we will see this in a very simple example. (In some sense the example may be too small to be convincing, but it does show that the correspondence doesn't work out in general.)

Let $L = \mathbb{Q}(\sqrt[3]{2})$ and $K = \mathbb{Q}$.

- (a) Is L/K a Galois extension?
- (b) Find [L:K].
- (c) Find all intermediate fields $M, K \subseteq M \subseteq L$. (SUGGESTION: Consider the tower law $[L:K] = [L:M] \cdot [M:K]$ and find the possible degrees of the intermediate fields first.)
- (d) Write down the lattice of intermediate fields.
- (e) Let $G = \operatorname{Aut}(L/K)$. If $\sigma \in G$ explain where σ must send $\sqrt[3]{2}$. (SUGGESTION: As usual you should start with the minimal polynomial of $\sqrt[3]{2}$ over \mathbb{Q} .)
- (f) Compute G (i.e., find all elements of G).
- (g) Write down the lattice of all subgroups of G. (This will be quite small.)
- (h) For each subgroup H of G, find L^{H} .
- (i) For each intermediate field M, find $\operatorname{Aut}(L/M)$.

2. Suppose that $(\alpha_1, \beta_1), \ldots, (\alpha_k, \beta_k)$ are points of \mathbb{C}^2 (i.e., $\alpha_i, \beta_i \in \mathbb{C}$), and that the set $S = \{(\alpha_1, \beta_1), \ldots, (\alpha_k, \beta_k)\}$ is stable under complex conjugation. (This means that if $(\alpha_i, \beta_i) \in S$ then $(\overline{\alpha_i}, \overline{\beta_i}) \in S$ too). For any $d \ge 0$, consider the \mathbb{C} -vector space V_d of polynomials of degree $\leq d$ in $\mathbb{C}[x, y]$ which are zero at all (α_i, β_i) , $i = 1, \ldots, k$. Show that V_d has a basis consisting of polynomials with real coefficients.

3. In this problem we will work out the Galois correspondence in the case $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ and $K = \mathbb{Q}$. Recall that from **H3** Q2(d) we know that $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ is a basis of L/K.

(a) Show that L/K is a Galois extension.

Let G = Gal(L/K). In this case it turns out that G is the Klein four-group, $G = \{e, \tau_1, \tau_2, \tau_1\tau_2\}$ where all elements except e have order 2, and τ_1 and τ_2 commute. The action of G on L may be deduced from the information :

- (b) Deduce the action of τ_1 , τ_2 on $\sqrt{6}$.
- (c) Deduce the action of τ_1 , τ_2 , and $\tau_1\tau_2$ on an arbitrary element $a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}$ of L (with $a, b, c, d \in \mathbb{Q}$).
- (d) Find all subgroups of G and write down the (reversed) lattice of subgroups of G
- (e) For each subgroup H of G, find the fixed field L^{H} .

SUGGESTION: To find the elements of L fixed by an element σ of G, start with a general element $\alpha = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}$ of L, write down the equation $\sigma(\alpha) = \alpha$, and consider it as a system of linear equations in the unknowns a, b, c, and d. Solutions to the equations are elements of L fixed by σ . (Here you will need to use your formula from (c) to see what $\sigma(\alpha)$ is.)

(f) Write down the lattice of intermediate fields of L/K.

4. Let L/K be a Galois extension, G = Gal(L/K), and set d = |G| = [L : K]. Let $\sigma_1, \ldots, \sigma_d$ be the elements of G, and choose any basis $\alpha_1, \ldots, \alpha_d$ of L over K. Explain why the determinant

(SUGGESTION : Consider the matrix as giving a linear map $L^d \longrightarrow L^d$ and use part of the argument from the proof of Artin's lemma.)