1. Let L / K be a finite extension and $G=\operatorname{Aut}(L / K)$. Even if L / K is not a Galois extension we always have order-reversing maps of lattices

$$
\{\text { lattice of subgroups } H \text { of } G\} \underset{L^{H}}{\stackrel{H}{\longleftrightarrow}}\{\text { lattice of intermediate fields } M\}
$$

However, if L / K is not a Galois extension, there is no reason that these maps have to be bijections. In this problem we will see this in a very simple example. (In some sense the example may be too small to be convincing, but it does show that the correspondence doesn't work out in general.)
Let $L=\mathbb{Q}(\sqrt[3]{2})$ and $K=\mathbb{Q}$.
(a) Is L / K a Galois extension?
(b) Find $[L: K]$.
(c) Find all intermediate fields $M, K \subseteq M \subseteq L$. (Suggestion: Consider the tower law $[L: K]=[L: M] \cdot[M: K]$ and find the possible degrees of the intermediate fields first.)
(d) Write down the lattice of intermediate fields.
(e) Let $G=\operatorname{Aut}(L / K)$. If $\sigma \in G$ explain where σ must send $\sqrt[3]{2}$. (Suggestion: As usual you should start with the minimal polynomial of $\sqrt[3]{2}$ over \mathbb{Q}.)
(f) Compute G (i.e., find all elements of G).
(g) Write down the lattice of all subgroups of G. (This will be quite small.)
(h) For each subgroup H of G, find L^{H}.
(i) For each intermediate field M, find $\operatorname{Aut}(L / M)$.
2. Suppose that $\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{k}, \beta_{k}\right)$ are points of \mathbb{C}^{2} (i.e, $\left.\alpha_{i}, \beta_{i} \in \mathbb{C}\right)$, and that the set $S=\left\{\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{k}, \beta_{k}\right)\right\}$ is stable under complex conjugation. (This means that if $\left(\alpha_{i}, \beta_{i}\right) \in S$ then $\left(\overline{\alpha_{i}}, \overline{\beta_{i}}\right) \in S$ too). For any $d \geqslant 0$, consider the \mathbb{C}-vector space V_{d} of polynomials of degree $\leqslant d$ in $\mathbb{C}[x, y]$ which are zero at all $\left(\alpha_{i}, \beta_{i}\right), i=1, \ldots, k$. Show that V_{d} has a basis consisting of polynomials with real coefficients.
3. In this problem we will work out the Galois correspondence in the case $L=\mathbb{Q}(\sqrt{2}, \sqrt{3})$ and $K=\mathbb{Q}$. Recall that from H3 Q2(d) we know that $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ is a basis of L / K.
(a) Show that L / K is a Galois extension.

Let $G=\operatorname{Gal}(L / K)$. In this case it turns out that G is the Klein four-group, $G=$ $\left\{e, \tau_{1}, \tau_{2}, \tau_{1} \tau_{2}\right\}$ where all elements except e have order 2 , and τ_{1} and τ_{2} commute. The action of G on L may be deduced from the information :

(b) Deduce the action of τ_{1}, τ_{2} on $\sqrt{6}$.
(c) Deduce the action of τ_{1}, τ_{2}, and $\tau_{1} \tau_{2}$ on an arbitrary element $a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}$ of L (with $a, b, c, d \in \mathbb{Q}$).
(d) Find all subgroups of G and write down the (reversed) lattice of subgroups of G
(e) For each subgroup H of G, find the fixed field L^{H}.

Suggestion: To find the elements of L fixed by an element σ of G, start with a general element $\alpha=a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}$ of L, write down the equation $\sigma(\alpha)=\alpha$, and consider it as a system of linear equations in the unknowns a, b, c, and d. Solutions to the equations are elements of L fixed by σ. (Here you will need to use your formula from (c) to see what $\sigma(\alpha)$ is.)
(f) Write down the lattice of intermediate fields of L / K.
4. Let L / K be a Galois extension, $G=\operatorname{Gal}(L / K)$, and set $d=|G|=[L: K]$. Let $\sigma_{1}, \ldots, \sigma_{d}$ be the elements of G, and choose any basis $\alpha_{1}, \ldots, \alpha_{d}$ of L over K. Explain why the determinant

$$
\left|\begin{array}{ccccc}
\sigma_{1}\left(\alpha_{1}\right) & \sigma_{1}\left(\alpha_{2}\right) & \sigma_{1}\left(\alpha_{3}\right) & \cdots & \sigma_{1}\left(\alpha_{d}\right) \\
\sigma_{2}\left(\alpha_{1}\right) & \sigma_{2}\left(\alpha_{2}\right) & \sigma_{2}\left(\alpha_{3}\right) & \cdots & \sigma_{2}\left(\alpha_{d}\right) \\
\sigma_{3}\left(\alpha_{1}\right) & \sigma_{3}\left(\alpha_{2}\right) & \sigma_{3}\left(\alpha_{3}\right) & \cdots & \sigma_{3}\left(\alpha_{d}\right) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\sigma_{d}\left(\alpha_{1}\right) & \sigma_{d}\left(\alpha_{2}\right) & \sigma_{d}\left(\alpha_{3}\right) & \cdots & \sigma_{d}\left(\alpha_{d}\right)
\end{array}\right| \neq 0
$$

(Suggestion : Consider the matrix as giving a linear map $L^{d} \longrightarrow L^{d}$ and use part of the argument from the proof of Artin's lemma.)

