1. Suppose that K is a field of characteristic zero, and $p(x) \in K[x]$ an irreducible polynomial of degree d over K. Let $\alpha_1, \alpha_2, \ldots, \alpha_d$ be the roots of p(x), and $L = K(\alpha_1, \ldots, \alpha_d)$ the field obtained by adjoining all the roots of p(x).

Let S be the set $S = \{\alpha_1, \ldots, \alpha_d\}$ of the roots.

- (a) If σ is an element of Aut(L/K) explain why, for any root $\alpha_i \in S$, $\sigma(\alpha_i) \in S$ too, so that the group G = Aut(L/K) acts on the set S.
- (b) If $\sigma \in G$, and $\sigma(\alpha_i) = \alpha_i$ for i = 1, ..., d, explain why σ is actually the identity map $\sigma : L \longrightarrow L$ on L.
- (c) An action of a group G on a set S is the same as a homomorphism $G \longrightarrow \text{Perm}(S)$ from G to the group of permutations of S. Explain why the action from part (a) gives an *injective* homomorphism.
- (d) Explain why the group G acts *transitively* on S. [HINT: Lifting lemma!]
- (e) Explain why G can be realized as a subgroup of S_d , the symmetric group on d elements, such that the subgroup acts transitively on the set $\{1, \ldots, d\}$.

2. Let $K = \mathbb{Q}$, and $\zeta = e^{2\pi i/7}$. By **H3** Q1, the minimal polynomial of ζ over \mathbb{Q} is $q(x) = x^6 + x^5 + x^5 + x^3 + x^2 + x + 1 = \frac{x^7 - 1}{x - 1}$.

- (a) Show that all other roots of q(x) are powers of ζ , and explain why this shows that $L = \mathbb{Q}(\zeta)$ is the splitting field for q(x).
- (b) Let $G = \operatorname{Gal}(L/\mathbb{Q})$. For $\sigma \in G$, explain why σ is completely determined by what it does to ζ . (i.e., once you know what $\sigma(\zeta)$ is, you know how σ acts on all of L.)
- (c) Compute the Galois group $G = \text{Gal}(L/\mathbb{Q})$. (Keeping in mind part (b) of this question, and part (d) of question 1 may help, but don't get hung up on it if it doesn't.)
- (d) Describe the subgroups of G, and draw the corresponding diagram of intermediate fields between \mathbb{Q} and L.
- (e) Compute the Galois groups for the extensions $\mathbb{Q}(\cos(\frac{2\pi}{7}))/\mathbb{Q}$ and $\mathbb{Q}(i\sin(\frac{2\pi}{7}))/\mathbb{Q}$, where $i = \sqrt{-1}$. (NOTE: These are subfields of L.)

In the next two problems we will explore some further aspects of the Galois correspondence.

3. Recall that a group G is a product $G = H_1 \times H_2$ if and only if there are normal subgroups $H_1 \subset G$ and $H_2 \subset G$ such that $H_1 \cap H_2 = \{e\}$ and $H_1 \cdot H_2$ (the subgroup generated by H_1 and H_2) is equal to G.

Suppose that $K \subseteq L$ is a finite Galois extension, and M_1 and M_2 are two intermediate fields such that:

- **1.** Both $K \subseteq M_1$ and $K \subseteq M_2$ are Galois extensions.
- **2.** $M_1 \cap M_2 = K$.
- **3.** The smallest subfield of L containing both M_1 and M_2 is L itself.
- (a) If H_1 and H_2 are the subgroups of $G = \operatorname{Aut}(L/K)$ corresponding to M_1 and M_2 under the Galois correspondence, show that $G = H_1 \times H_2$.
- (b) Conversely, if the Galois group G is a product $G = H_1 \times H_2$, then show that there are two intermediate fields M_1 and M_2 having properties (1)–(3) above.
- (c) Consider again the extension $\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}$ and its intermediate fields $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$. Use (a) to find the Galois group $\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}$. (This justifies the claim about this Galois group from **H6** Q3.)

4. Suppose that L/K is a Galois extension with Galois group G, and let $M_1 \subseteq M_2$ be intermediate fields, corresponding to subgroups H_1 and H_2 of G.

- (a) What condition on H_1 and H_2 is equivalent to the condition that " M_2/M_1 is a Galois extension"?
- (b) Given that this condition on groups holds, what is $Gal(M_2/M_1)$, i.e., how do you compute $Gal(M_2/M_1)$ from H_1 and H_2 ?