1. Newton's Recursion for the power sums. Fix $n \geqslant 1$ and variables x_{1}, \ldots, x_{n}. For any $m \geqslant 1$ the m-th power sum is $P_{m}=x_{1}^{m}+x_{2}^{m}+\cdots+x_{n}^{m}$. Since P_{m} is a symmetric polynomial Newton's theorem tells us we may express P_{m} in terms of the elementary symmetric polynomials e_{1}, \ldots, e_{n}. A recursive formula, also due to Newton, gives a quick way to do this.
For purposes of the recursion we will use the symbol e_{r} for all $r \geqslant 1$, with the convention that $e_{r}=0$ if $r>n$. We also set $P_{0}=1$, contrary to the formula for $m \geqslant 1$. Newton's recursion is

$$
P_{m}=e_{1} P_{m-1}-e_{2} P_{m-2}+e_{3} P_{m-3}-\cdots-(-1)^{m-1} e_{m-1} P_{1}-(-1)^{m} m e_{m} P_{0} .
$$

(Don't miss the factor of m in the final term.) Starting with $P_{1}=e_{1}$, this tells us how to express the power sums in terms of the elementary symmetric polynomials. E.g., when $n=2$ we have
$P_{1}=e_{1} ; \quad P_{2}=e_{1} P_{1}-2 e_{2} P_{0}=e_{1}^{2}-2 e_{2} ; \quad P_{3}=e_{1} P_{2}-e_{2} P_{1}+3 e_{3} P_{0}=e_{1}^{3}-3 e_{1} e_{2}$.
Note that in computing P_{3} we have used our convention that $e_{3}=0($ since $n=2)$.
(a) Suppose that $n=3$. Use Newton's recursion to compute the formulae for P_{2}, P_{3}, and P_{4}.
(b) Let α_{1}, α_{2}, and α_{3} be the roots of $f=x^{3}+5 x^{2}+6 x-4$. Compute $\alpha_{1}^{4}+\alpha_{2}^{4}+\alpha_{3}^{4}$.
2. For each of the following cubic polynomials f compute $\operatorname{Gal}(L / \mathbb{Q})$ where L is the splitting field of f. If you are claiming that the polynomial f is irreducible over \mathbb{Q}, be sure to include a justification. (Caution: at least one of the cubics is reducible.) Also recall that if $f=x^{3}+b x^{2}+c x+d$, then

$$
\Delta(f)=b^{2} c^{2}+18 b c d-4 b^{3} d-4 c^{3}-27 d^{2}
$$

(a) $f_{1}=x^{3}+4 x^{2}+x+1$.
(b) $f_{2}=x^{3}+4 x^{2}+2 x-2$.
(c) $f_{3}=x^{3}+4 x^{2}+3 x-1$.
(d) $f_{4}=x^{3}+4 x^{2}+4 x+1$.
3. In this problem we will see what the sign of the discriminant of a real cubic polynomial tells us about its real or complex roots. Let $f=x^{3}+b x^{2}+c x+d \in \mathbb{R}[x]$. We assume that f has distinct roots, that is, that $\Delta(f) \neq 0$. We do not need to assume that f is irreducible.
(a) Explain why f has to have at least one real root. (Hint: This is really a problem in calculus, in particular, the intermediate value theorem may be useful.)

Let α_{1} be any real root, and α_{2} and α_{3} the other two roots.
(b) Assume that α_{2} and α_{3} are real. Show that $\Delta(f)>0$. (SugGestion: first show that $\delta(f) \in \mathbb{R}$.)
(c) Now assume that α_{2} is not real. Show that $\alpha_{3}=\bar{\alpha}_{2}$, i.e., that α_{2} and α_{3} are conjugate complex numbers.
(d) By (c) we may write $\alpha_{2}=a-b i$ and $\alpha_{3}=a+b i$ for some $a, b \in \mathbb{R}$, with $b \neq 0$. Show that $\Delta(f)<0$. (Suggestion: first show that $\delta(f)$ is purely imaginary, i.e., of the form $i \cdot t$ for some real number $t \neq 0$.)
4. In this problem we will work out a few other identities involving the discriminant. Let $f \in K[x]$ be a monic polynomial of degree n, with roots $\alpha_{1}, \ldots, \alpha_{n}$.
(a) For any $c \in K$, show that $\Delta(f(x+c))=\Delta(f(x))$. That is, show that translating the polynomial does not change the discriminant. (E.g. for $f=x^{3}+5 x^{2}+3 x+1$, $f(x-2)=(x-2)^{3}+5(x-2)^{2}+3(x-2)+1=x^{3}-x^{2}-5 x+7$ has the same discriminant as f.) Suggestion: What are the roots of $f(x+c)$?
(b) For any number β, explain why $\left(\beta-\alpha_{1}\right)\left(\beta-\alpha_{2}\right) \cdots\left(\beta-\alpha_{n}\right)=f(\beta)$.
(c) Let $g \in K[x]$ be a monic polynomial of degree m with roots $\beta_{1}, \ldots, \beta_{m}$. Show that $\left(\prod_{i=1}^{m} f\left(\beta_{i}\right)\right)^{2}=\left(\prod_{j=1}^{n} g\left(\alpha_{j}\right)\right)^{2}$
(d) Show that $\Delta(f \cdot g)=\Delta(f) \cdot \Delta(g) \cdot\left(\prod_{i=1}^{m} f\left(\beta_{i}\right)\right)^{2}$.

