Math 414 Homework Assignment 9

DUE DATE: MAR. 17, 2016

1. NEWTON’S RECURSION FOR THE POWER SUMS. Fix n > 1 and variables xq, ...,
Zn. For any m > 1 the m-th power sum is P,, = " + 7' + --- + 2. Since P,, is
a symmetric polynomial Newton’s theorem tells us we may express P,, in terms of the
elementary symmetric polynomials e;,. .., e,. A recursive formula, also due to Newton,
gives a quick way to do this.

For purposes of the recursion we will use the symbol e, for all » > 1, with the convention
that e, = 0 if r > n. We also set Py = 1, contrary to the formula for m > 1. Newton’s
recursion is

Pm = €1Pm_1 — €2Pm_2 + €3Pm_3 — e (—1)m_16m_1P1 - (—1)mmemP0

(Don’t miss the factor of m in the final term.) Starting with P, = e, this tells us how to
express the power sums in terms of the elementary symmetric polynomials. E.g., when
n = 2 we have

P1 = €1, P2 = €1P1—2€2P0:€%—262; P3 = €1P2—62P1+363P0:6§—3€162.
Note that in computing Ps; we have used our convention that e3 = 0 (since n = 2).

(a) Suppose that n = 3. Use Newton’s recursion to compute the formulae for P, P,
and P;.

(b) Let o, ag, and ag be the roots of f = 2® 4+ 522 + 62 — 4. Compute af + a3 + aj.

2. For each of the following cubic polynomials f compute Gal(L/Q) where L is the
splitting field of f. If you are claiming that the polynomial f is irreducible over QQ, be
sure to include a justification. (CAUTION: at least one of the cubics is reducible.) Also
recall that if f = 23 + bx? + cx + d, then

A(f) = b*c* + 18bed — 4b°d — 4¢® — 27d>.

a) =23 +42> +x+ 1.

(a)

(b) fo =2+ 42 + 2z — 2.
(c) fs =2®+42* + 3z — 1.
)

(d) fi=2"+42® + 4z + 1.



3. In this problem we will see what the sign of the discriminant of a real cubic polynomial
tells us about its real or complex roots. Let f = 2% + ba? + cx + d € R[z]. We assume
that f has distinct roots, that is, that A(f) # 0. We do not need to assume that f is
irreducible.

(a) Explain why f has to have at least one real root. (HINT: This is really a problem
in calculus, in particular, the intermediate value theorem may be useful.)

Let a; be any real root, and ay and a3 the other two roots.

(b) Assume that oy and ag are real. Show that A(f) > 0. (SUGGESTION: first show
that 6(f) € R.)

(¢) Now assume that s is not real. Show that ag = @, i.e., that ay and az are
conjugate complex numbers.

(d) By (c) we may write aps = a — bi and a3 = a + bi for some a,b € R, with b # 0.
Show that A(f) < 0. (SUGGESTION: first show that d(f) is purely imaginary, i.e.,
of the form i - t for some real number ¢ # 0.)

4. In this problem we will work out a few other identities involving the discriminant.
Let f € K[z] be a monic polynomial of degree n, with roots ay,.. ., a,.

(a) For any ¢ € K, show that A(f(x + ¢)) = A(f(x)). That is, show that translating
the polynomial does not change the discriminant. (E.g. for f = 23 + 522 + 3z + 1,
flx—2)=(x—2)*+5(x—2)2+3(x —2) +1 =23 — 2> — 5x + 7 has the same
discriminant as f.) SUGGESTION: What are the roots of f(z + ¢)?

(b) For any number 3, explain why (8 — a1)(8 — as) -+ (8 — ay) = f(B).
(¢) Let g € K|x] be a monic polynomial of degree m with roots f1,. .., B,. Show that

(T2, £59) " = (T2 ()
(d) Show that A(f-g) = A(f) - Alg) - (TT1, £(8:))™.



