
Math 414 Homework Assignment 9
due date: Mar. 17, 2016

1. Newton’s recursion for the power sums. Fix n > 1 and variables x1, . . . ,
xn. For any m > 1 the m-th power sum is Pm = xm

1
+ xm

2
+ · · · + xm

n . Since Pm is
a symmetric polynomial Newton’s theorem tells us we may express Pm in terms of the
elementary symmetric polynomials e1,. . . , en. A recursive formula, also due to Newton,
gives a quick way to do this.

For purposes of the recursion we will use the symbol er for all r > 1, with the convention
that er = 0 if r > n. We also set P0 = 1, contrary to the formula for m > 1. Newton’s
recursion is

Pm = e1Pm−1 − e2Pm−2 + e3Pm−3 − · · · − (−1)m−1em−1P1 − (−1)mmemP0.

(Don’t miss the factor of m in the final term.) Starting with P1 = e1, this tells us how to
express the power sums in terms of the elementary symmetric polynomials. E.g., when
n = 2 we have

P1 = e1; P2 = e1P1 − 2e2P0 = e2
1
− 2e2; P3 = e1P2 − e2P1 + 3e3P0 = e3

1
− 3e1e2.

Note that in computing P3 we have used our convention that e3 = 0 (since n = 2).

(a) Suppose that n = 3. Use Newton’s recursion to compute the formulae for P2, P3,
and P4.

(b) Let α1, α2, and α3 be the roots of f = x3 + 5x2 + 6x− 4. Compute α4

1
+ α4

2
+ α4

3
.

2. For each of the following cubic polynomials f compute Gal(L/Q) where L is the
splitting field of f . If you are claiming that the polynomial f is irreducible over Q, be
sure to include a justification. (Caution: at least one of the cubics is reducible.) Also
recall that if f = x3 + bx2 + cx+ d, then

∆(f) = b2c2 + 18bcd− 4b3d− 4c3 − 27d2.

(a) f1 = x3 + 4x2 + x+ 1.

(b) f2 = x3 + 4x2 + 2x− 2.

(c) f3 = x3 + 4x2 + 3x− 1.

(d) f4 = x3 + 4x2 + 4x+ 1.
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3. In this problem we will see what the sign of the discriminant of a real cubic polynomial
tells us about its real or complex roots. Let f = x3 + bx2 + cx+ d ∈ R[x]. We assume
that f has distinct roots, that is, that ∆(f) 6= 0. We do not need to assume that f is
irreducible.

(a) Explain why f has to have at least one real root. (Hint: This is really a problem
in calculus, in particular, the intermediate value theorem may be useful.)

Let α1 be any real root, and α2 and α3 the other two roots.

(b) Assume that α2 and α3 are real. Show that ∆(f) > 0. (Suggestion: first show
that δ(f) ∈ R.)

(c) Now assume that α2 is not real. Show that α3 = α2, i.e., that α2 and α3 are
conjugate complex numbers.

(d) By (c) we may write α2 = a − bi and α3 = a + bi for some a, b ∈ R, with b 6= 0.
Show that ∆(f) < 0. (Suggestion: first show that δ(f) is purely imaginary, i.e.,
of the form i · t for some real number t 6= 0.)

4. In this problem we will work out a few other identities involving the discriminant.
Let f ∈ K[x] be a monic polynomial of degree n, with roots α1,. . . , αn.

(a) For any c ∈ K, show that ∆(f(x+ c)) = ∆(f(x)). That is, show that translating
the polynomial does not change the discriminant. (E.g. for f = x3+5x2+3x+1,
f(x − 2) = (x − 2)3 + 5(x − 2)2 + 3(x − 2) + 1 = x3 − x2 − 5x + 7 has the same
discriminant as f .) Suggestion: What are the roots of f(x+ c)?

(b) For any number β, explain why (β − α1)(β − α2) · · · (β − αn) = f(β).

(c) Let g ∈ K[x] be a monic polynomial of degree m with roots β1,. . . , βm. Show that
(

∏m

i=1
f(βi)

)2

=
(

∏n

j=1
g(αj)

)2

(d) Show that ∆(f · g) = ∆(f) ·∆(g) · (
∏m

i=1
f(βi))

2
.

2


