
Math 414 Homework Assignment 10
due date: Mar. 24, 2016

1. For each of the following quartic polynomials f compute Gal(L/Q), where L is
the splitting field of f . The resultant cubic p(t) and discriminant ∆(f) for each f are
included in the table. All of the polynomials are irreducible over Q, a fact you may
assume without having to prove.

f(x) p(t) ∆(f)

(a) x4 − 2x3 + 2x2 + 2 t3 − 2t2 − 8t+ 8 3136
(b) x4 + x3 + 2x2 + 2x+ 1 t3 − 2t2 − 2t+ 3 117
(c) x4 + 2x3 + 2x2 − 2x+ 1 t3 − 2t2 − 8t 2304
(d) x4 + x3 + x2 + x+ 1 t3 − t2 − 3t+ 2 125
(e) x4 + 2x3 + x2 − 3x+ 1 t3 − t2 − 10t− 9 257

2. In class we skipped over almost all of the details of the algorithm for detecting the
difference between C4 and D4 when computing the Galois group of an irreducible quartic
polynomial. In this problem we will check some of the claims for the polynomial g1(t).

Let K be a field of characteristic zero, and let f = x4 + bx3 + cx2 + dx + e ∈ K[x] be
an irreducible quartic with splitting field L. We suppose that the resultant cubic p(t)
has a single root β ∈ K, β = γ13|24. Recall that this means that the Galois group G is
contained in 〈(1 2 3 4), (1 3)〉 = D4, and is either D4 or C4 = 〈(1 2 3 4)〉. We set

g1(t) = (t−(α1+α3))(t−(α2+α4)) = t2−(α1+α2+α3+α4)t+(α1+α3)(α2+α4) = t2+bt+(c−β).

The importance of the last equality is that it shows that g1(t) ∈ K[t].

(a) Explain what σ = (1 2 3 4) does to each of the roots α1, α2, α3, and α4. (This
question is to asking if you understand the isomorphism Perm(S) ∼= S4 we have
been using.)

(b) Show that {α1 + α3, α2 + α4} is a single orbit under C4 and D4.

(c) There is nothing to say that α1+α3 and α2+α4 couldn’t be equal. (The set in (b)
could consist of a single element, e.g. {z, z} = {z}.) Show that α1 +α3 = α2 +α4

if and only if α1 + α3 ∈ K. (Hint : Your calculation in (b) is relevant.)

(d) Conclude that either g1(t) is irreducible over K or that g1(t) has a double root.

(e) Explain why either δ(g1) 6∈ K or δ(g1) = 0.

We now want to show that if G = C4 then δ(g1)δ(f) ∈ K. This is clear when δ(g1) = 0,
so for the rest of the problem we assume that δ(g1) 6= 0. We also assume that G = C4.
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(f) Explain why δ(f) 6∈ K. (Reminders : What does δ(f) detect? What is G?)

(g) Explain why there is only one intermediate field M ⊂ L of degree 2 over K.

(h) Explain why K(δ(g1)) and K(δ(f)) are degree 2 extensions of K.

(i) By (g) and (h) there are a0, a1 ∈ K such that δ(g1) = a0+a1δ(f). Since δ(g1) 6∈ K,
δ(g1) is not fixed by G, and hence there is some τ ∈ G so that τ · δ(g1) = −δ(g1).
Applying τ to the equation above, explain why this means that a0 = 0.

(j) Explain why δ(g1)δ(f) ∈ K.

Remarks. () The same argument, with α1α3 and α2α4 replacing α1+α3 and α2+α4,
shows that if G = C4 then δ(g2)δ(f) ∈ K. () A separate (shorter) computation shows
that both of these cannot happen if G = D4, which leads to the criterion for the test.

3. Let L/K be a Galois extension with Galois group G, and β an element of L. Let
S = OrbG(β) be the orbit of β under G, say S = {β = β1, β2, . . . , βs}, and finally set
q(x) =

∏s

j=1
(x− βj).

In this problem we will show that q(x) is the minimal polynomial of β over K.

(a) Explain why all the coefficients of q(x) are in K, so that q(x) ∈ K[x]. (Sugges-
tion : what does acting by G do to the elements of S?)

It is clear that q(x) is a monic polynomial with β as a root. Therefore to show that q(x)
is the minimal polynomial of β, it is sufficient to show that q(x) is irreducible over K.

(b) Suppose that q(x) factors as q(x) = q1(x)q2(x), with each of q1, q2 ∈ K[x], and
of degree at least one. By relabelling q1 and q2 if necessary, we may assume that
q1(β) = 0. Explain why, for every σ ∈ G, σ(β) is a root of q1(x).

(c) Show that none of the roots of q2(x) are in the orbit of β.

(d) Explain why the result in (c) is a contradiction, and hence that q(x) must be
irreducible.

Remark. In other arguments (e.g., in class, or H7 Q1) we have shown that given an
irreducible polynomial q(x) ∈ K[x], with roots in a Galois extension L/K, that the
Galois group G = Gal(L/K) acts transitively on the set of roots of q(x). Thus, the set
of roots of q(x) is a single orbit under G. Reversing this, we conclude that given an
element β ∈ L, the minimal polynomial of β must be the polynomial whose roots are
the orbit of β. In other words, arguments we have already made lead to the conclusion
of Q3. On the other hand, the arguments in Q3 also imply that G acts transitively on
the roots of q(x), i.e., imply the arguments we have already made (and without using
the lifting lemma!). Probably it is best to absorb these as a single fact.
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