1. For each of the following quartic polynomials f compute $\operatorname{Gal}(L/\mathbb{Q})$, where L is the splitting field of f. The resultant cubic p(t) and discriminant $\Delta(f)$ for each f are included in the table. All of the polynomials are irreducible over \mathbb{Q} , a fact you may assume without having to prove.

	f(x)	p(t)	$\Delta(f)$
(a)	$x^4 - 2x^3 + 2x^2 + 2$	$t^3 - 2t^2 - 8t + 8$	3136
(b)	$x^4 + x^3 + 2x^2 + 2x + 1$	$t^3 - 2t^2 - 2t + 3$	117
(c)	$x^4 + 2x^3 + 2x^2 - 2x + 1$	$t^3 - 2t^2 - 8t$	2304
(d)	$x^4 + x^3 + x^2 + x + 1$	$t^3 - t^2 - 3t + 2$	125
(e)	$x^4 + 2x^3 + x^2 - 3x + 1$	$t^3 - t^2 - 10t - 9$	257

2. In class we skipped over almost all of the details of the algorithm for detecting the difference between C_4 and D_4 when computing the Galois group of an irreducible quartic polynomial. In this problem we will check some of the claims for the polynomial $g_1(t)$.

Let K be a field of characteristic zero, and let $f = x^4 + bx^3 + cx^2 + dx + e \in K[x]$ be an irreducible quartic with splitting field L. We suppose that the resultant cubic p(t)has a single root $\beta \in K$, $\beta = \gamma_{13|24}$. Recall that this means that the Galois group G is contained in $\langle (1234), (13) \rangle = D_4$, and is either D_4 or $C_4 = \langle (1234) \rangle$. We set

$$g_1(t) = (t - (\alpha_1 + \alpha_3))(t - (\alpha_2 + \alpha_4)) = t^2 - (\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4)t + (\alpha_1 + \alpha_3)(\alpha_2 + \alpha_4) = t^2 + bt + (c - \beta).$$

The importance of the last equality is that it shows that $g_1(t) \in K[t]$.

- (a) Explain what $\sigma = (1\,2\,3\,4)$ does to each of the roots $\alpha_1, \alpha_2, \alpha_3$, and α_4 . (This question is to asking if you understand the isomorphism $\operatorname{Perm}(S) \cong S_4$ we have been using.)
- (b) Show that $\{\alpha_1 + \alpha_3, \alpha_2 + \alpha_4\}$ is a single orbit under C_4 and D_4 .
- (c) There is nothing to say that $\alpha_1 + \alpha_3$ and $\alpha_2 + \alpha_4$ couldn't be equal. (The set in (b) could consist of a single element, e.g. $\{z, z\} = \{z\}$.) Show that $\alpha_1 + \alpha_3 = \alpha_2 + \alpha_4$ if and only if $\alpha_1 + \alpha_3 \in K$. (HINT : Your calculation in (b) is relevant.)
- (d) Conclude that either $g_1(t)$ is irreducible over K or that $g_1(t)$ has a double root.
- (e) Explain why either $\delta(g_1) \notin K$ or $\delta(g_1) = 0$.

We now want to show that if $G = C_4$ then $\delta(g_1)\delta(f) \in K$. This is clear when $\delta(g_1) = 0$, so for the rest of the problem we assume that $\delta(g_1) \neq 0$. We also assume that $G = C_4$.

- (f) Explain why $\delta(f) \notin K$. (REMINDERS : What does $\delta(f)$ detect? What is G?)
- (g) Explain why there is only one intermediate field $M \subset L$ of degree 2 over K.
- (h) Explain why $K(\delta(g_1))$ and $K(\delta(f))$ are degree 2 extensions of K.
- (i) By (g) and (h) there are $a_0, a_1 \in K$ such that $\delta(g_1) = a_0 + a_1 \delta(f)$. Since $\delta(g_1) \notin K$, $\delta(g_1)$ is not fixed by G, and hence there is some $\tau \in G$ so that $\tau \cdot \delta(g_1) = -\delta(g_1)$. Applying τ to the equation above, explain why this means that $a_0 = 0$.
- (j) Explain why $\delta(g_1)\delta(f) \in K$.

REMARKS. (1) The same argument, with $\alpha_1\alpha_3$ and $\alpha_2\alpha_4$ replacing $\alpha_1 + \alpha_3$ and $\alpha_2 + \alpha_4$, shows that if $G = C_4$ then $\delta(g_2)\delta(f) \in K$. (2) A separate (shorter) computation shows that both of these cannot happen if $G = D_4$, which leads to the criterion for the test.

3. Let L/K be a Galois extension with Galois group G, and β an element of L. Let $S = \operatorname{Orb}_G(\beta)$ be the orbit of β under G, say $S = \{\beta = \beta_1, \beta_2, \ldots, \beta_s\}$, and finally set $q(x) = \prod_{j=1}^s (x - \beta_j)$.

In this problem we will show that q(x) is the minimal polynomial of β over K.

(a) Explain why all the coefficients of q(x) are in K, so that $q(x) \in K[x]$. (SUGGES-TION : what does acting by G do to the elements of S?)

It is clear that q(x) is a monic polynomial with β as a root. Therefore to show that q(x) is the minimal polynomial of β , it is sufficient to show that q(x) is irreducible over K.

- (b) Suppose that q(x) factors as $q(x) = q_1(x)q_2(x)$, with each of $q_1, q_2 \in K[x]$, and of degree at least one. By relabelling q_1 and q_2 if necessary, we may assume that $q_1(\beta) = 0$. Explain why, for every $\sigma \in G$, $\sigma(\beta)$ is a root of $q_1(x)$.
- (c) Show that none of the roots of $q_2(x)$ are in the orbit of β .
- (d) Explain why the result in (c) is a contradiction, and hence that q(x) must be irreducible.

REMARK. In other arguments (e.g., in class, or **H7** Q1) we have shown that given an irreducible polynomial $q(x) \in K[x]$, with roots in a Galois extension L/K, that the Galois group G = Gal(L/K) acts transitively on the set of roots of q(x). Thus, the set of roots of q(x) is a single orbit under G. Reversing this, we conclude that given an element $\beta \in L$, the minimal polynomial of β must be the polynomial whose roots are the orbit of β . In other words, arguments we have already made lead to the conclusion of Q3. On the other hand, the arguments in Q3 also imply that G acts transitively on the roots of q(x), i.e., imply the arguments we have already made (and without using the lifting lemma!). Probably it is best to absorb these as a single fact.