
Math 414 Homework Assignment 11
due date: Mar. 31, 2016

1. In this problem we will investigate solvability for a particular matrix group. For a
general group G, we say that G is solvable if G has a composition series

{e} = G0 E G1 E G2 E · · · E Gn = G

where each factor Gi/Gi−1 is an abelian group. When G is a finite group our lemma
from class shows this is the same as requiring that G has a composition series where
each factor is cyclic of prime order. For infinite groups there is no guarantee that there
are quotients of finite order, and it turns out that having factors which are abelian is
still a useful notion, which is why the definition above is the general one.

Let B be the Borel subgroup of GL2(R), i.e., B is the subgroup

B =

{[

a b
0 d

]

a, b, d ∈ R, ad 6= 0

}

of upper triangular matrices. Consider the following subgroups of B :

{[

1 0
0 1

]}

⊂

{[

1 b
0 1

]

b ∈ R

}

⊂

{[

a b
0 1

]

a, b ∈ R, a 6= 0

}

⊂ B

Show that each subgroup is normal in the next (i.e, that they form a composition series)
and that each quotient is abelian. Also, identify each quotient group (the quotients are
abelian groups which you should know, or at least be able to describe).

2. In this problem we will prove part (b) of the lemma on radical extensions from class.
That is, we will show that if M is a field of characteristic zero which contains a primitive
m-th root of unity ζ , and β and element such that βm ∈ M , then the extension M(β)/M
is Galois with abelian Galois group.

Set γ = βm. Then β is a root of f(x) = xm − γ ∈ M [x].

(a) Find the roots of f and explain why they are all in M(β). (Hint: Don’t forget
that ζ ∈ M .)

(b) Let q(x) be the minimal polynomial polynomial of β over M . Explain why q(x) |
f(x).

(c) Explain why q(x) splits completely in M(β).

(d) Explain why M(β)/M is a Galois extension.
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Let G = Gal(M(β)/M). Since β is a generator of M(β)/M , to understand how σ ∈ G
acts on M(β) it is enough to understand what σ does to β.

(e) Explain why σ(β) = β · ζn for some n ∈ {0, . . . , m− 1}.

Let us use σn to name an element such that σn(β) = β · ζn. (So σ3(β) = β · ζ3,
σ4(β) = β · ζ4, σ0(β) = β · ζ0 = β, etc.) Note we are not claiming that σn ∈ G for every
possible n, just that this gives a consistent way of giving a name to the elements of G.

(f) Suppose that σn1
, σn2

∈ G. Show that σn1
σn2

= σn2
σn1

by computing what each
side does to β. (Hint: ζ is in M .)

Since σn1
and σn2

were arbitrary, this means that G is abelian, proving this part of the
lemma.

3. In this problem we will see what the general constructions from class mean in two
examples we have already computed. In each of the examples we had K = Q, and L the
splitting field of a polynomial of the form f(x) = xm − γ, with γ ∈ K (i.e, in γ ∈ Q).

(a) On February 22nd and 24th (“An example”, and “An example continued”) we
computed the Galois group of the splitting field of f(x) = x3−2. (The answer was

that the Galois group is S3 = D3.) Let L be this splitting field, i.e., L = Q(2
1

3 , ω)

where ω = e
2πi

3 . The tower of fields

Q ⊂ Q(ω) ⊂ Q(ω, 2
1

3 ) = L

is a radical tower. Identify the subgroups of Gal(L/K) corresponding to each of
the fields in the tower, and compute the factors of the resulting composition series.
(By our lemma from class, they should all be abelian.)

(b) On February 26th (“A more complicated example”) we computed the Galois group
of the splitting field of f(x) = x4 − 5. (The answer was that the Galois group is

D4.) Let L = Q(5
1

4 , i) be the splitting field. The tower of fields

Q ⊂ Q(i) ⊂ Q(i, 5
1

4 ) = L

is a radical tower. Identify the subgroups of Gal(L/K) belonging to each of the
fields in the tower, and compute the factors of the resulting composition series.
(They should again all be abelian.)

In this question you can freely use the details we computed in class (e.g., the Galois
correspondence) — there is no need to work it out again from scratch.
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