1. In this problem we will show that tensor product is a right-exact functor. Let A be a ring, and suppose that we have an A-module N and an exact sequence

$$
\begin{array}{cccccc}
M_1 & \xrightarrow{f} & M & \xrightarrow{g} & M_2 & \rightarrow & 0
\end{array}
$$

of A-modules. We need to show that

$$
\begin{array}{cccccc}
M_1 \otimes A N & \xrightarrow{\bar{f}} & M \otimes A N & \xrightarrow{\bar{g}} & M_2 \otimes A N & \rightarrow & 0
\end{array}
$$

is also exact, where $\bar{f} = f \otimes \text{Id}_N$, $\bar{g} = g \otimes \text{Id}_N$, and where the tensor product is over A.

(a) Start by showing that \bar{g} is surjective. Since elements of the form $m_2 \otimes n$ generate $M_2 \otimes A N$, it is sufficient to show that these types of elements are in the image of \bar{g}. (Also: Don’t forget the working hypothesis in this question, that the original sequence is exact.)

(b) Now show that $\bar{g} \circ \bar{f}$ is the zero map. One way is again by seeing what happens to the generators $m_1 \otimes n$ of $M_1 \otimes A N$.

Let $Q = \text{Im}(\bar{f})$ so that Q is a submodule of $M \otimes A N$ and set $P = (M \otimes A N)/Q$. By part (b), $Q \subseteq \ker(\bar{g})$ so that \bar{g} factors through the projection map to P. That is, there exists $g_0: P \rightarrow M_2 \otimes A N$ such that the diagram below commutes.

$$
\begin{array}{cccccc}
M_1 \otimes A N & \xrightarrow{\bar{f}} & M \otimes A N & \xrightarrow{\bar{g}} & M_2 \otimes A N & \rightarrow & 0
\end{array}
$$

We want to show that the map g_0 is an isomorphism. To do this we look for a map $h: M_2 \otimes A N \rightarrow P$ in the other direction, and to do that we start as usual by looking for a bilinear map $M_2 \times A N \rightarrow P$.

(c) Given $m_2 \in M_2$ call a lift of m_2 any element m of M such that $g(m) = m_2$. Explain why the “map” $M_2 \times A N \rightarrow M \otimes A N$ given by $(m_2, n) \mapsto (\text{any lift of } m_2) \otimes n$ is not well-defined, i.e, is not a map.

(d) Now explain why the map $M_2 \times A N$ given by $(m_2, n) \mapsto \text{the class of } (\text{any lift of } m_2) \otimes n$ in P is a well-defined map. (The map in this question is the ill-defined formula from (c), followed by projection to P.)
(e) Given that this map is well-defined (i.e., given part (d)) , to show that the map is A-bilinear.

Thus, the map above induces an A-module map $h: M_2 \otimes N \rightarrow P$ such that $h(m_2 \otimes n) =$ the image of $m \otimes n$ in P (where m is any lift of m_2). Using this formula show that

(f) $g_0 \circ h = \text{Id}_{M_2 \otimes N}$ and

(g) $h \circ g_0 = \text{Id}_P$.

2. We will now use right exactness to compute some tensor products.

(a) Let m and n be positive integers, and set $d = \gcd(m, n)$. Prove that $(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) = \mathbb{Z}/d\mathbb{Z}$.

Now fix a field k and set $A = k[x, y]; M_1 = A/(x); M_2 = A/(x-y);$ and $M_3 = A/(x-1)$. All of M_i are A-modules.

Compute

(b) $M_1 \otimes_A M_2$.

(c) $M_1 \otimes_A M_3$.

(d) $M_2 \otimes_A M_3$.

The modules in (a), (b), and (c) are finite dimensional vector spaces over k. When you compute them, try and describe them in the simplest way possible, and also give their dimensions as vector spaces over k.

3. In this problem we will examine some formulae from linear algebra from the point of view of multilinear algebra. Let k be a field and V and W finite dimensional vector spaces over k. If we choose bases $\{v_j\}_{j=1}^{r}$, $\{w_i\}_{i=1}^{s}$ for V and W, then any linear map $\varphi: V \rightarrow W$ can be represented (with respect to this basis) by a matrix $[c_{ij}]$. On the other hand, if we set v_1^*, \ldots, v_r^* to be the basis dual to v_1, \ldots, v_r, then we know from class that $\{v_j^* \otimes w_i\}_{j=1, i=1}^{r, s}$ is a basis for $V^* \otimes W$. Hence any $\varphi \in \text{Hom}_k(V, W) \cong V^* \otimes W$ can be written as a unique sum $\sum_{i,j} c'_{ij}(v_j^* \otimes w_i)$.

(a) Show that $c_{ij} = c'_{ij}$ for all i and j. I.e., show that the entries of the matrix give the coordinates of φ in the basis $\{v_j^* \otimes w_i\}$. (SUGGESTION: Linear maps are determined by what they do to a basis. Compare what the matrix description and the sum $\sum_{i,j} c'_{ij}(v_j^* \otimes w_i)$ are telling us to do to each basis vector v_j.)
(b) Show that the evaluation map $W^* \times W \rightarrow k$ given by $(f, w) \mapsto f(w)$ is k-bilinear.

The evaluation map therefore induces a map $W^* \otimes W \rightarrow k$, and so (via the isomorphism $W^* \otimes W \cong \text{Hom}(W, W)$) we get a map $\text{Hom}(W, W) \rightarrow k$. This map does not depend on any choice of basis of W, since the original description of the evaluation map was basis free. Let us now try and figure out what this map is.

(c) Let $\varphi: W \rightarrow W$ be a linear map. Choosing a basis w_1, \ldots, w_s for W, we can represent φ as matrix $[c_{ij}]$ or (by part (a)) as the sum $\sum c_{ij} w_j^* \otimes w_i \in W^* \otimes W$. Use the second representation to evaluate the result of applying the map $W^* \otimes W \rightarrow k$ to φ. What (basis free) operation on matrices is this?

Let U, V and W be three (finite dimensional) vector spaces over k. By using the map $W^* \otimes W \rightarrow k$ as defined in the previous question, we get a map

\[
V^* \otimes_k (W \otimes_k W^*) \otimes_k U \rightarrow V \otimes_k k \otimes_k k \otimes_k U \cong V^* \otimes_k U.
\]

This gives us the following diagram, where the vertical maps are isomorphisms, and the bottom horizontal map the map just described.

\[
\begin{array}{ccc}
\text{Hom}(V, W) \otimes_k \text{Hom}(W, U) & \rightarrow & \text{Hom}(V, U) \\
\oplus \oplus & & \oplus \oplus \\
(V^* \otimes_k W) \otimes_k (W^* \otimes_k U) & \rightarrow & V^* \otimes_k U \\
\oplus \oplus & & \oplus \oplus \\
V^* \otimes_k (W \otimes_k W^*) \otimes_k U & \rightarrow & V^* \otimes_k U
\end{array}
\]

Thus, combining all these, we get a map $\text{Hom}(V, W) \otimes \text{Hom}(W, U) \rightarrow \text{Hom}(V, U)$. We will now work out what this map is. Choose bases v_1, \ldots, v_r for V, w_1, \ldots, w_s for W, and u_1, \ldots, u_t for U.

(d) Given linear maps $\varphi: V \rightarrow W$ and $\psi: W \rightarrow U$, write out φ and ψ as elements of $V^* \otimes W$ and $W^* \otimes U$ respectively.

(e) Evaluate the image of $\varphi \otimes \psi$ in $V^* \otimes U$.

(f) What operation on matrices does this correspond to?