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g1. Introduction

This paper deals with a sort of inequality for the fir,
Chern classes of normal projective varieties with numerica;n,d secopd
canonical classes (Theorem 1.1); to some exten y effective

titis a continuati
. eSS 3 10n of t
author’s previous paper [Mil] in which the surface case was discuss:ic

Our generalized inequality will be, however, farther-reaching in connexion
with the classification theory of algebraic varieties developed by S, Jitaka
K. Ueno, M. Reid, E. Viehweg, S. Mori, Y. Kawamata and many otherst
For instance, we can derive the non-negativity of the Kodaira dimension
for certain “minimal” threefolds (Theorem 1.2), which is a crucial step in
the classification of threefolds after the construction of minimal models of
non-uniruled varieties (the so-called “minimal model conjecture”, see (6.5)
below).
The precise statements of our results are as follows:

Theorem 1.1 (characteristic 0). Let k be an algebf’dicalf)’ Closed.ﬁe’d
of characteristic 0 and X a normal projective Q-Gorenstein s Of;lz:’rni;:;
sion n>2 over k with singular locus of codimension Z3. Ig:lm-eya iy
canonical divisor K € Pic (X)®Q is numer ically effective. e

i opary jvisors Hy, = *»
any resolution of the singularities. Then, for arbitrary ample divi ‘
H._, on X, the inequality
. P*H" -2) _2-0

)—ci(r) s psen

3e(Y ’ y et
Y. I particular, if n=3, o al -Icifncilte 05]’ *t(ho;e of effective ration?
s IS

eﬂec’i"e, i.e., its numerical clas
Cyeles.

Gey(Y)— (Y™ Hi- -

-ec”’ve 'hreefold

Let X be d normal P }1 divisor Kz €

Theorem 1.2 (characteristic 0)- e canonw:’ . numerical}’

w' .,
P;:h only canonical singularities. A
¢ i numerically effective.
\—
R
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), then there exists a positive integer y g,

s T ch 1/1(" '
ivalent to an effective divisor, ; ,

non-trivial (in AXX)o

A a o

g Corler S0 Jol etq e. (For the definition of cangp; th(' Odaip,
dimension of X 1S non-negatye: cal SIgujyy:
i ;

ties, we refer t0 [R2].)

Theorem 1.1 heavily depends on two things ¢

roof of g ; ’ e
t :;tzsls)ary (at least explicitly) in the surface case [Mil]: the “gen:,r-e
::mipositivity theorem” for cotangent bundles and the theory of Semistab;f

sheaves, especially the qupmolov-Glesekf;:r :nequal:ity. ‘

The generic semipositivity theorem, first proved in [Mi3], ASSErts
the cotangent bundle of a smoo}h projective Vi”ety X is SeMipositive g,
a “generic curve” in X unlﬁess X is uniruled. The result will pe quoteq j,
Section 6 with minor modifications necessary for later use.

The notion of semistable sheavgs was 1.ntrodpced by Mumforq [Muj)
(on curves) and F. Takemoto (in higher c‘llmensnon) for the study of the
moduli problem of vector bundles. But it was Bogomolov who reglizg
that semistability imposes certain constraints on geometric invarjangs ((B];
also compare Mumford’s vanishing theorem [R1] as an ingenious applica.
tion). This aspect of semistability does not seem to have been fully
exploited so far, hence rather lengthy descriptions below.

Let us sketch the outline of this paper.

The subsequent three sections are devoted to discussions on semi-
stable sheaves. The results there are more or less known or direct con-
sequences of known facts, yet the author could not find a suitable
reference in which they are presented in forms relevant to our purpose.

In Section 2, defining A-semistable sheaves which are generalizations
of H-semistable sheaves in Takemoto’s sense, we shall state a modified
version of a theorem due to Mumford-Mehta-Ramanathan (withou!
proof). In addition, we shall describe the behaviour of U-stability und
the variation of 9[,

~ Section 3 contains a somewhat non-standard treatment. We shil

fil‘;ieadztlilzzjmal characterization for the semistable vector ‘bundlesd::u:

fouiid by 3 Niwer a field of cl:nargctenstnc 0 (the result. was indepen e
Y 5. Mukai). This criterion, though quite easily proved, I"Y

Striki"gly varioy . :ites 10
§ connotations which wi itute the prerequis!
our arguments, will constitu p

Section 4 ¢

1 : " . ualil}'
for W-semistap) cals with the so-called Bogomolov (-Gieseker) 1¢4%

ntan)
AR G approach not only gives an elem¢

l. i en
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ﬂt:e esults proved here is the “non-negatjy, o; the g s ne
t e . . " 1 SecO’rd
.ql varieties” . Cher ©
mimal varie i
min In Section 7, we show Theorem L1, where ¢ f

tions are extensively used togethe
5 dy appeared in the surface case.
alrca'1'hf.3orem 1.2 will be proved in §e
stein case follows an idea of P.M.H. w;

. $in the reced;
T with the techniqes wh;:c;ce}?::i
Ction §, T

he Proo
Ison.

fin the Goren.
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Notation and Convention

In this article, the ground field k will be of characteristic 0 except in
Sections 2 and 5. A variety over k will refer to a geometrically irreducible
and reduced k-scheme of finite type. A curve, a surface ora threefold means
a variety of dimension 1, 2 or 3 over the grounq field. A vector bundle
will be understood to be a locally free sheaf of ﬂm.te rank. The rank. (l)fb a
torsion free sheaf means the rank at the generic point. All sheaves will be
coherent unless otherwise mentioned. g0 :

A (coherent) subsheaf # of a torsiop free sheaf & :sf:;;l:w:;lebi;
saturated if the quotient &/ is again torsmn'free. F l[:se e
both # and &/ are locally free (of course this makes steCd s g
¢ is a vector bundle). On a normal variety, a satura
subbundle in codimension 1. _ as an element

The e class. /(#)-of 8:cobeopal Shea li l;egc?(:%imension i (cf.
in the Chow group A'(X) generated by the cycle
BSD. ents

By Q-Weil and Q-Cartier divisors we mean elem |
and Pic(x )J®Q, respectively. the following sym-

: . ic geometry,

Besides standard notation in algebraic lg

s will be freely used throughout this articie:

4(X) (resp. A,(X)); the Chow group of €

sion 7). . R.
N'(X)={Pic (X)/numerical eq}nva‘eé‘:}%% e
N'(X)={A1(X )/numerical equivalen . the open oM
NA(X): the ample cone CN'(X), ViZ

in A'(X;®Q

: dimen-
odimension i (resP-

gen-

/_

‘u‘l

{
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ted by the classes of real ample Cartier divisors.
era

o f the ample cone; a Cartier divisor wh:

NA(X):tthftsc le(;:Lr:::n(t) is said to be numerically effectiye. Which

le(;e)ri1 :he effective cone CN,(X), Viz. the convex cope genery
by the real effective .l -cycles. iy N

o(1,): the tautological lm.e bundle on the projective bundie "

; associated with a torsion free she?f & on X, )

[e,(0(1,))—(1/rank &)*e,(8)] € N (P(é’)):. the normalizy -

plane class of P(&) (when c,(&) 1s Q-Cartier). Yper.

1 the i-th symmetric tensor power of &.

Ty the tangent sheaf.

Q. the cotangent sheaf. |

K, the canonical divisor € 4'(X )‘ of a r?orma] variety X: b
tion, the closure of the canonical divisor of the smooth p

Q*={x e Q|x>0}.

R,={xe R|x=0}.

h'(X, §)=dim, H'(X, &).

(X, &)=2_ (—1)'h (X, &): the Euler characteristic.

Vz, Vo, etc.: an underlying Z-module, Q-vector space, etc. of an p.
vector space V.

TPre,

A=

Y defin.
art of y

§2. YU-semistable sheaves

Let X be a normal projective variety of dimension n over an algebra-
cally closed (or perfect) field k of arbitrary characteristic. Let & bea
torsion free sheaf on X. The Chern classes ¢,(&) are defined as elements
sitting in the Chow group A(X), which is by definition the group of
cycles of codimension i divided by rational equivalence. In particula"
thg first Chern class ¢,(¢) sits in 4'(X), the group of Weil divisors (modulo
rational equivalence). When X is Q-factorial (e.g. smooth) or deté !
Q-Cartier (e.g. & is a vector bundle), ¢,(¢) is a Q-Cartier divisor and!®

numerical class in N '(X) is well-defined.

The averaged first Chern class of a torsion free sheaf & will refer

Y eliective Q-Carti Cin with respe¢
1o % will be the ration O-Cartier divisors, the averaged degree

b fin
since X j al number 0u(E)=38(E)h, - - -h,_,; it i well-de ?

1 -1
tWO. "

. & . t
: I outside a ¢ dimension 2
¢ is said to pe losed subset of co

UA-semistable if

0 F) <o)
for every ng,

o yas
well g oo in g;ero Subsheaf # of ¢ r o is 9-semistable, then §® o
; “SeMmistable, where Z is a line bundle and &* den®
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&, Oy).
| sheaf #om (&, Oy

e If A=(H], ---,[H]) (or ¢, n=y,
mistable” (or simply “'semistable™) Instead of “U-semistab) e
s The semi-direct product of the SYmmetric groyp S,., With {he
ultiplicative group (QZX)"-! acts on NA(X)z-t ip o natural way, The
g;semistabi“ty and the B-semistability are Mutually equivaleny i Aand @

lie in the same orbit. . .
The following theorem is easily shown by a standard arg

WE use the terminologv “H-

ument [HN];

Theorem 2.1 (A-semistable or Harder-Narasimh
be a torsion free sheaf on X and A ¢ NA(x )%
a unique filtration

an filtration), Let &
1 " 'e
as above, Then there exists

Z!: 0=6C8, 2. &l,=¢&

that has the following properties:

) Gr2 wW)=¢&/E_, is a torsion free i’I-semista.blcj sheaf;
g) 5,(16':';(2.)) is a strictly decreasing function in i,

i -semistable filtration is said
t subsheaf &, in the above % semistab .
be'l;:: (::;'1:121 ;;l-destabiliz]ing subsheaf of &, which is characterized by
to ‘
i erties: e
s &:il)lo“gn(i't)wzodr:(r.;% for every coherent subslu;zf F of 6,
n\“Yi/= :
b) If 6,(F)=0x(&)) for F C&, then F C&,

The A-sem &* is essentially the
i | sheaf &* is essentia .
i filtration of the dua sams by

heh ;sef :; ta\:')ilfh each entry substituted by the duals of the q
same as that of &,
F i ion depends
he fixed torsion free sheaf &, the 9[-semistable filtratio

or a fixed torsi : ’
on ¥, yet the dependence is not too bad:

ilizing subsheaf
: denote the maximal -destabilizing
Theorem 2.2. Let §7C¢& de

Jor We NAX )3 ioining <t
segment jo : teR.0

O e 18 b o Qratonl ot onL (R0

N Al R — —_— N wh .

pr SR aSB —5( (&) (in particular, 676 1.)1:01‘51). on @ provided &

;l). Then 6o(E?) =0y el(é“?I 5) depends contir

the positive constant e=e(&; ¥,

and U are fixed.

o e NAX)g™ and C €

A4K stand for the join of (%,
t .

& PO €
A of the segments joim:gt?; (&%= 5(EM for ever)
SNYX)™1 of A such that 5.(€3
NaQoy,
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n— here exists an open no;
AX)e!, then 1 Pen neiboy,
i Nh thataé'u(é' 9) =0,(67) for every B e U, rhoog e

A3)
NAX )™ of U sH¢
For simplicity, we show the case n=2 only,

igher dimensions. :
r hig ed by global sections, we haye

Proof. the Prog :

i+ similar fo
qulte(Sll) If é’*(H) is generat

569 L3:(0x(H))=c=c(6, ©).

put ¢’ =c'(&, ¥, €)=8:(£7)-  BY the definition of the maxima] destabyj;,

ing sheaves, we get
3a(67) = 05(67)-

5o(*) is a linear function in B=(1—1)A+1C and this inequality j Fewrit
ten as follows:

(1—1)84(6%) +10:(6D) = (1 — 1)0:(ET) +104(67).

Hence
t

WEDSHEDS 2(EDN+——

(0e(67) —04(67))

4
1—1t

<d¢(67) + (c—=<’).

Note that §(67), 6(¢7) e (1/r)4'(X),, while A e (1/m)N'(X), for some
positive integer m. Therefore, if

?

L (c—e)<

1—1¢ r!
then 6,(67)=34(67). Now the assertion immediately follows (& P
1/e=r!m{2+(c—c’)}).
. ) Let U be the open ball centred at 9 with radius I, wher?
r=infsexe(£; A, C)d(Y, G), d( , ) standing for a Euclidean distan®®
(3) Let KCNA(X) be a sphere centred at 9 and apply (2)

Y ]%rollary 23. Let K W(X )"~* be a compact subset away f’o::
se:zist:lff )QIJ' _T hen the B-semistable filtration is a refinement of 1"
¢ filtration for 8 ¢ (4£K), sufficiently near ¥.

Coroll
(1) ;l:, 22[.: .Let “f’..be a given torsion free sheaf on X- i (X)?z"‘
@ The ge emistability of & is a closed condition for % € et

tinuous jn 9y c N:gth "o_jl" the U-semistable filtration of & IS lower
(X)%™, while rank &% is upper semicontinious:



3) 34(¢7) is a continuous, Piecewise

Multilineqy y
and continuous on any (Q-rat:onal) segmen Sunet;

{ CNZ(X)&—I‘
The following theorem is very impor

: 3 t ] A

understanding of U-semistable sheayes - portant ang luminative o, the

Theorem 2.5 (Mumford, Mehta‘Ramanathan) .

free sheaf on a normal projective variery y | Fin s flt & be a torsion

= ov .
cally clost?d_ field.  Let ?I_(h,: A T s (”_])_mplzf ot}n algebrai.
Cartier divisors and H,_, an integral Cartier divisor such thay gnfle 0-
Q.[H..l. Letm be a large integer and y a sufficiently generic me;rlg-l p
the Iinear S)’Stm lm}I.n-ll. PUf 2[}’:(]11, S hn_O)IY € NA(Y) -2 : ;;Of
the maximal 3 -destabilizing subs} 1eaf of &|y ext ends: toa saturaleQd s:zlbslul’fl;

of &. In particular, & is U-semistable if and only if &\, is . -com:
(n=dim, X =2). Y Ely is Ayp-semistable

The paper [MR] gives a proof when A=(h, -+, h)and X is o

but the argument (essentially the theory of Hilbert schemes) remains valid
in our situation.

Remark 2.6. Over C, the adjective “sufficiently generic” above,
which means the member concerned belongs to the complement of a
countable union of proper closed subschemes of the parameter space (the
linear system in this case), may be replaced by “generic” or “general”
thanks to (3.13) below.

Remark 2.7. In case X, & and ¥ are defined over a perfect subficld
ky of k, U-semistable filtration of & is also defined over k, by its unicity.
Thus, in characteristic 0, the field of definition is not essential for the %A-
semistability. From geometric point of view, semistability behaves more
naturally or functorially than stability (e.g. under the base change, tensor
Products, etc.); see the next section.

83. A numerical criterion for semistability on curves

: cter-
Throughout this section, the ground field will always be of chara

istic 0 eéxcept in (3.2).
Let C be a complete curve defined ov
closed) field & and assume that C is geome

€ C®,k is irreducible and smooth over t he associated
Let & beka vector bundle of rank r on Cand 7 P@&)—C

: i : terized by certain
Projective bundle. Then the semistability of &18 charac

o d
. which 1s define
Il::lmerical properties of the normalized hyperplane class 4
ow,

arily algebraically

trically irreducible and sglo?tll:,
he algebraic closure k ol K.

er a (not necess

_
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logical line bundle

Let €(1,) denote the tauto : on P(&) 4y .

numerical cla:ss of C.(C"(lc))“"‘*o(“‘; ) € N (P(&))g: r2, is the cl;sg A'f the
> 0

relative anti-canonical divisor —Kpin+7*Ke. 2, s uniquely doy, A
by two properties: (2) 22=0 and (b) 4, on each fibre g nUmzn_hned
Tical)y

equivalent to the hyperplane.
It is easy to show that

N'(P(£)=RA,Dz*N'(X),  N(P(E)=2"N'(P(¢))

Theorem 3.1 (characteristic 0). 7 he following five conditions ar
© e equi.

valent:
1) & is semistable;

2) 2, is numerically effective;

3) NAP(6))=R.i,+ R.x*d, where d i
N(C)z=Z; o § ere d s a positive generatoy of

4) NEP(6))=R,2;"'+ R, 2, *n*d,;

5) Every effective divisor on P(&) is numerically effective

- The equivalence between 3) and 4) is straightforward by Kleiman's
criterion fgr ampleness [K1]. To prove the implication 1)=>2
the following: ), we need

Propositi
position 3.2. Let f be a separable surjective k-morphism of a

smooth complete curve C’
on ; : . ) :
semistable. to C. & is semistable if and only if f*¢ is

Proof. e 2 F

Let & be); seTnhi:tall)fe 1?: r:ﬂxs o l..et us prove the “only if” part
assume that f is a Gal e on C Without loss of generality, we may
acts on f*¢ in a natur ;)1s morphism, with G being the Galois group. 0
bundle of f*¢, For a?, way. Let &, be the maximal destabilizing su>
Hence there exists Y 8€G,g*F =F, thanks to the unicity of 7
a subbundle &, of ¢ such that 6, =F,. By the

semistabil; =
i Yy, 6,=¢, F = S*&. This proves the assertion.
r0of of Theorem 3.1.

32): sy
Ppose that 2, is not numerically effective; i.e., th

an irreducible cu
MeS a union of Y Some base change f: C"’—C, the multi-Sectlo;:

0 " fc a
isvaer e ¢ interscctir;) 8§ sections C}’ on the projective bundle P(
) Natura] Surjection P N number cY 22 L0 eidlenth negative.
T0oill,u)~0 a € =my0r sun(1,2,)—20,. (1,..). The line 0"
unstable . hencec;- ‘r+) has degree C s e *g it feb
IS unstable by 3 2‘) ret(f*E) < (f*6)s

ere exist
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2)=>3), 4. If 277%(a2,+bz*q) g . _
ically eﬂeCtive, then. b= z:—l.( a 2‘. + bn*d)go‘:ldoeﬂ‘eclwe and 3.9
3), 4):}5). Since 4, is numerically effective,
any positive real number e. Assume that g7 b,.*’ ot ample for
| Ty T «+br d is an effect:
Then the 1-cycles (@4, +bz*d)(2, +ex*d )""* and their lim; cliective divisor,
sit in the closuFe of the. effective cone NE(P(£) ]l{mnt ("2:+bz*d)z;-:
and ai,+br*d is numerically effective by 3). TN 4,520 py g
3) :g{l). Suppose that & is unstable ang let &, be .
destabilizing subbundle. Let a be a rational numpe A, : the maximal
Then, by the Riemann-Roch theorem, (E)>a>4(¢).

ex¥d s

HY(C, #%&(—Nad))C H'(C, LYE(—Nad))
=~ H(P(8), O(N)®z*0o(— Nad))

is nqn-trivial for suﬁiciently_ large N. Hence N{2,+(3(6)—a)z*d) is
effective but clearly not numerically effective,

For convenience’ sake, let us introduce new concepts. Let D be a
Q-Cartier divisor on a normal projective variety X and & a vector bundle
(or torsion free sheaf). The symbol £(D) is called a Q-vector bundle (or
Q-torsion free sheaf). A Q-torsion free sheaf F =&(D) is said to be
ample or semipositive if 1,4+ z*D is ample or numerically effective. Since
there exists a finite covering f: X’— X such that the pull-back f*D is an
integral Cartier divisor [BG), f*&F =f*&(f*D) is a well-defined sheaf on
X'; & is ample or semipositive if and only if so is f*# in the usual
sense [H1].

If #=£(D) is Q-torsion free, the dual Q-torsion free shez.af F* of
course refers to £*(—D). If F* is ample or semipositive, 9’ is said to
be negative or seminegative. The tensor product of &,(D,) will stand for
¢® - -®&)D,+---+D,). Similarly, we can naturally dcﬁr}e S}';Tel;
metric products, exterior products, direct sums, etc. of Q-torsion
sheaves,

The following assertion is a matter of triviality:

etric tensor
Proposition 3.3. The direct sums, tensor Pr ofh“";:} vgngtorsioﬂ free
Products and exterior products of ample (or semipos!

Sheaves are all ample (or semipositive).

i hrased via the
Let us return to curves. Theorem 3.1 will be T€P

Rotion of Q.vector bundles: b
is sen
Theorem 3.4, Ler & be a vector bundle o7 C. Then&iss

d only if E(—3(8)) is semipositive.
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emistable if and only if £* is semistable, thijs also impy;
les:

& is semistable if and only if §(—a(&)) s SeMinegg,
Ive,

Since & 1S S

Theorem 3.4
Let &,C---C&,=& be the semistable filtration of £ Since 4

/& eis slemistable and deg (%,) is decreasing in i, & (— &) i =
féga;;\;e Conversely, if deg D is smaller than deg d(&)) for a O-divic

then &(— D), containing an ample @-bundle &,(— D), is never SMinegatjy,

Hence:

Corollary 3.5. &(—D) is sem.inegative (?r negative) if and only if
deg D=>deg 8(&,) (or >), where &, is the maflfnal 'destabilizing Stbbungy
of &. Similarly, &(D) is semipositive (or positive) if and only if deg D>
deg 8((£*),) (or >). "

Corollary 3.6 (cf. [H1]). A semistable vector bundle & on Cis ample
(resp. semipositive, seminegative, negative) if and only if its degree is Ppositive
(resp. non-negative, non-positive, negative).

Corollary 3.7. Let & and F be semistable bundles on C. Then
ERF and Hom(E, F) are also semistable.

Proof. EQ@F(—3(6 @ F)) = (6(—d(8) R(F(—8(F)) is semi-
positive and we have the first assertion. The second is trivial because
Hom(&, F) is isomorphic to £*Q .

Corollary 3.8. Let & and be two vector bundles. H#om(é,F)

is negative if and only if deg 3(F,) + deg 6((6*),)<0. In particular,
Hom(&,, £/6,) is negative, l X

e hCorollary 39. Let p: GL(r)>GL(s) be a polynomial representation
'€ maps the scalar matrices 1 scalars. Let &° be the vector bundle of

rank s induced by g rank r + . ;
. ector b CIféis
semistable, then so i g¢ undle & and the representation p. If

Corollary 3.9,

Semistable (n> ), A vector bundle & is semistable if and only if ¢ ©

Proposition 317,
are equivalen; -

8; 6 is semistgpje -
é(=D); e ",
(=D) is negative where p is 4 Q-divisor of degree 3(¢ )+(12 r)

Proof,

The imnions:
and let ¢, pe th: MPlication (=(2) has been shown above. Ass!
Maximal destabilizing subsheaf. Then &(— D) is "8

For a vector bundle & on C, the following conditions

ative
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if deg D>deg d(&
O;:yother hand botgl '()1 esoathat deg 6(¢6) < deo 459
: P g0(4,) and deg g 89(8,)<a(¢)
pavo deg (6) =e8 6). BOE) sit in (1jp1yz, 2
o Hence we

Corollary 3.12. Let €¥—T
be a
here - oroper
curves, W € and T are k-varieties. | Smooth family of ;
Then the set et & be a vectpr . irreduciple
‘ undle on o

S(T)= .
(T)={teT|¢is semistable on C}
t

is a Zariski open subset of T.

Corollary 3.13 (A ; -
theorem). [ri;, be bg 4 ?;ilzg?d Ve-rslo.n of Mumford-Mehta-R
& a torsion free sheaf. Let H, projective variety of dimension amanathan’s
for sufficiently large integers ,1,; -+ H,_, be ample Cartier di:'lisz::r CT/a"d
bundle F of & |; ext 1 s My_y, the maximal R
Benplete in}: ers|:cti0 :na’s fo a saturated subsheaf of & on X‘??élhzmg sub-

curve of |m.H,|'s. (Such an extensi “ "fg""t’fal
sion of & is

necessarily the maximal (H,, -
Rl (Hyy <0y H, _,)-destabilizing subsheaf of & hence

Remark 3.14. Ove
ke r C, the results (3.7
as easv co . " )’ (3'9), (3-10 d -
asscrtsythaltlsc;%:es‘:;isstztl‘)lN?fr 85121 ke TR the)orer; E‘Sglk‘:ﬁm
‘ €1l an if it is i .
sentation of the fundamental grougflly if it is induced by a unitary repre-

§4. The :
Bogomolov-Gieseker inequality for semistable sheaves

In this secti .
characteristic 0. ion, the ground field k is always algebraically closed of

ve variety of dimension n and
n X, with its
effective

Lemm
Ye NA(x ):'?.l' Let X be a normal projecti
first Chern ol Le{ & be an N-semistable torsion free sheaf 0
artier djy; ass being a Q-Cartier divisor. Let D be d non-zero
tisor on X. Then

HX, & 6(—1c,(8)— D) =0

Jor e
ver i F 5
Y Positive integer t such that tc,(&) is an integral Cartier divisor.

0 on every curve

Sing
;\I;e proo: isyfazf(—zcl(é"))=yrc{(g(_5(é")} has degree s theorem of
u rivial ¢ ce one uses H1° it i
onsequence of (3.6) on can do without 1t if

mfol-d_
one jg willil:,dehta'Ramanathan (3.13) (although on¢
g to (spend another couple of pages)-
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; n (4.1) and L a fixed Cgpy;
42. Let things be as in ( . artie
Tl n(t:;::::':':gzsion WX, 7 E(—1te(8)+ L) is bounded by
e
degree r—l int.

Proof. For simplicity of the. notgtion, put Ft— gnt g(*fc,(g))
The proof is by induction on the dimension 7 of X. TIf n=1 |e¢ D be;;
reduced effective divisor of degree d>deg L. We have a natural exy

sequence
H'(X, #(L—D)—>H(X, F(L))—>H"(D, (L))

di \'isO
F.
@ Polynonig)

of which the first term vanishes by (4.1), while the last term s 5 k-vector

s t4-r—1
space of dimension d (rt+rrt 1) =d (r ;*'_1 ) Thus we are done, Fy

n22, let U=(H,, - - -, H,_,) mod (Q%)"~, where H, is integral and ample,
Let Y be a general hyperplane section € |mH,_,| (m>0) such that 8y is
(H,, - -+, H,_,)-semistable on Y and that Y—L is ample. Note that sych

a number m, though possibly very large, is independent of 1. Consider
the exact sequence

H(X, Z(L-Y)—>HX, F4(L)—>HYY, F ‘(L))

The first term vanishes by (4.1) and the dimension of the last term is

bounded by a polynomial of degree r—1 by the induction hypothesis.
This completes the proof.

Theorem 4.3 (The Bogomolov-Gieseker inequality). Let S be a

smooth projective surface over k. If & is an H-semistable sheaf of rank r on
S (H is an ample divisor), then

(r—1)ci(6) < 2re,(8).

Proof. From (4.2) it follows that neither /(S, #™&(—fc(é)) 1
h’(si ‘9’"_‘5’(““'1(6’ )=h"(S, &g *(—1e,(6%¥)+Ky)) grows like 1™, wher¢
"+1=dim P(¢). Hence we obtain the inequality

XS, #¢ (—te(£))< (polynomial of degree rin 7).

0]
" the other hand, by the Riemann-Roch theorem,

X(S‘ yrgé. L - ir+t e i r)
)= a0 ) — () 4O
2 (l't )r+1

[

{_Cz(éb) + r ;‘l cg(g)}‘*‘O(’ )9
which implies the assertion,
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Remark 4.4. There have been two different proop
due to Bogomolov [B] and Gieseker [G2), ur pr 5 OF the ineqyq;
more elementary and geometric, Proof js, however, far

Corollary 4.5.  Let & be a vector py,
s. Let L be an ample integral diyiso,
ample and (—0(6)—L) is negative (g
inequality 2re(€) <(r—1)c}(&) and put

ndle
of rank r op a Smooth surfyee
on S such tha é(

Q-vector bundes), Assume the

a={(r—1)c¥(&)— 2rcz(é')}/6r’(r+ DLl*e Q.

Then either &'&(—15(&)) or S *(—¢ (&%) contains the ample line bundje

Os(taL), where t is any very large integer such that 10(8) and te are
integral.

Proof. For simplicity, put & =6(—05(8)). Then we have

t e 1 r—1 2 ot r+l r
XS, S F)= r+ D! {Tcx(cg) Cz(é')}t +0(").

Hence, by the Serre duality, we infer that
(S, #*F) or S, P F =Y

1
o I, SN
4r+D!r

Assume the first case and consider the natural exact sequences

{(r—Deci(&)—2rey(E)h™*!+O(1").

0—> HY(S, L' F(— taL))—sH(S, ¥ F)—>HYC, #'F),
0— HY(C, ' F (— tL))—> HY(C, #'F)—>HD, S*F),

d D is a O-cycle

Where C js 5 general curve linearly equivalent to fal an b a5 F-D)

of degree 12472, The first term of the latter sequence vanis
S hegative. Hence 1%(C, ') is bounded by

tza(rank yz?—)Lzz at’-ﬂ L2

(r—1)! :
L bk {_'_’_’.l‘ci'(é')"cz(é')} mod O(F")
3¢+ L 2

i large
s . L 3 whenever t is very ’
;Il;hns.lmphes that HY(S, &' (—tal)) is non-zero T ease yiclds

imi the s€
H.(‘fsl,e‘;‘of the first exact sequence. Similarly,

F*¥(~taL))0.
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Corollary 4.6. Let & be a torsion free subsheaf of rank r on 4 Smoog)
eoS and L an ample divisor as in (4.5). Assum'e that & satisfies the
f:g‘::ﬂity e &)< (r=1)ei(E). T hen, for any numerically effective iy,
I 2

D. the maximal D-destabilizing subsheaf &P has normalized degree o ol
b

than X&) — 2re(&)
Ny (r—1)ci(é)—zrel{e) ;p
O ) G 1)L

with respect to D.

Proof. We may assume that & is a vector bundle since £** j5 4
vector bundle with ¢,(6**)=¢,(£), c(6**)=c(E). We employ the same
notation as in (4.5). If %% contains taL, then 6,(6)—4,(8)=>alD.
When #'F* contains taL, 6,(67)—0,(8)=(1/r{op((£%),)—d,(£%)>
(1/r)aLD.

Thanks to (4.6) and the Mumford-Mehta-Ramanathan theorem, the
Bogmolov-Gieseker inequality is generalized to higher dimensions:

Corollary 4.7. Let & be a torsion free sheaf of rank r on a normal
projective variety X of dimension n and H,, - - -, H,_, ample Cartier divisors.
Let D be a numerically effective Cartier divisor on X. Assume that X is
smooth in codimension 2 and that H, - - -H, _,D is not numerically trivial.
If & is(H,, - -, H,_,, D)-semistable, then

(r—DcX&)H, - - -H,_ ,<2re(6)H,- - -H, _,.

Proof. Suppose the contrary. We may assume that '€ is a vector
bundle in codimension 2 by taking the double dual. Fix an ample divisor
o such that 6(—3(6) + H,) and 6*(3(6)+ H,) are both ample. Let H1¢
i rary) ample divisor. Then there exist positive integers m, =" "

»-2 depending on H such that the H|s-semistable filtration of &5 01"

2’1,5"32 \:ﬂ; the restriction of the (H,, .-, H, ,, H)-semistable filtration of
eneric complete | : 0 g
By (4~6) we have i et surface S::(mlHl)' 4 ‘(mn"-'H" S

6(61*)SH —0(&)SH =4,,((& T —84(& )

SNt {( —1)eX|5)— 2rey 1)) (H, Hoys/(HYs
=CONSL {(r — 1)e3(6) — 2rcy( )57 HH:S

where B=(H,, . HsS
m...m 8

™ . by
» M) Therefore ividi t both sides
n-2 W€ obtain the inequality e dciic S

,

J (8,
o ) > 81, () 4 const. HHH,- - -H, s
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inui the function g, (g o
he continuity of On 94(¢7) on a § "
(Sg H) (Corollary 2.4 (3)), we have c&ment joining (B, D) ang

0o, 0617 ") 209, 0)(€)+ const. DH,-..g ~, (
n=2-"0(n,5)(&),

2 contradiction.

Remark 4.8. If D is ample, (4.7) will b ;
(4.3) and (3.13). € a direct consequence of

Corollary 4.9. Let H,, -- -, H, , be ample Cartier divisors. If

{r = DeX(E)=2refE)H, - - . H,_,>0,

then & is (Hy, « + -, H,_o, D)-unstable for any non-zero numerically effective
divisor D.

§5. Semistability in positive and mixed characteristics

Over a field of positive characteristic, our argument in Sections 3, 4
needs amendments simply because the key lemma (3.2) may fail when
k(C’) is an inseparable extension of k(C) (i.e., f: C’—C is a Frobenius
k-morphism; for an example, see [G1]).

Let C be a smooth complete curve over an algebraically closed field
k of characteristic p>0. A vector bundle & on C is said to be strongly
semistable if, for every positive integer s, F**& is semistable, where
F': F-*C—C is the Frobenius k-morphism of degree g=p'. "C_"S an
elliptic curve, it is known that semistable bundles are strongly semistable

[O], but that is not the case when g(C)=2.

Proposition 5.1, If & is strongly semistable on C, then X6 is semi-

stable for any surjective k-morphism f: C'—C.

closure of k(C)
Proof. Let C” be a smooth model of the Separablerable and hence

mk(C").  The natural projection C '—C" is purely insepgo’ Proposition
2 Frobenijus F* for some non-negative integer Ev Bl
Sl Thus we get the commutative diagram

C’=F—‘C”—£,—>C”

gl u lh

-2 __,_,.—)C.
e *g‘-g*F‘*é' is also
Fixg i semi -8 : is SCParablc’ A
By mistable on F~*C. Since g1

Mistab]a by (3.2).
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e infer that the results (3.1), (3.4), (3.4), (3 6)
haracteristics if “‘semistability” is S’ubu(-l“) cap
Similarly, we have analogous assertio :lnuted by
g the assumption of A-semistability {‘Otohth(,_(;e
v that
of

From this W
be saved in positive C
“strong semistability”.
in Section 4 by changin

strong -semistability.
On an ordinary abelian variety, the semistability behaves qui
¥

(By deﬁnitiont Y is “ordinary” if the number of the points of
X *=Pic(X) is equal to p¥, g=dim X.) In fact, we have: order p on

Proposition 5.2. Let X be an ordinary abelian vari
over an algebraically closed field of positiie chaf;ct‘ec:::;{y of dimension g
tg(szon Qree sheaf which is locally free on an open subset ,3. Let & pe 4
(g llcmisl; ;_r:ogn -—1 228 {,et b(;‘ b'e a smooth .irreducible complete curve ,A,,,;Y of X
Bogomalov-nges I'cn w“., & ’f‘.md .only if &\ is semistable. In particy s
eker inequality is valid for every U-semi. PATRCar, the
sheaf on X (A € NA(X)§™). semistable torsion free

If one recalls that F, F*@

. xF¥O0y =@, ¢ xs Ox(7), th _
In m i ex; Ux(7), the proof read :
s c]l"i:i echar;t;x;lstncs, the semistability is an open cl(l)y gf’l'lo“s.
integral domain. R of o sm.ooth projective scheme over a ARy
Fix A € NA(X/R)3™! of characteristic 0 and & a torsion fre S
of geometric poi):ts’ tWehgre n i;the relative dimension of X ) ;‘1:1:1ft§n ;

pec R such th . d e set
open subset of S at &,/X, is A-semi
pec R by (3.11) and (3.13) tOgetther with tlllsetz:"gifofsrms %
ing:

Lemma 5.3, L
2 o C be
algebraically cl % a smooth complete
for a Q-diw::o,- (ge(‘ffff;ld k of arbitrary characteristic Cu;veg deﬁna{ e .a ’
egree o(6)+(1/2r"), then & is A:em{vt (b—l- i
X able.

The proof is implici
proof is implicitly contained in that of (3.11)
oves that th i il Lo
Wi ch: semls.tal')lhty behaves rather nicely under
racteristics. On the contrary, we know

very little abo
ut the st .
rong semitability of the reductions of a se istable
a semi

sheaf

€stion
hard problep,. ONIs closely relateq ¢ the foll Iy
ollowing natural but extrem?



an ] ]
A) ‘1 KOdaUa D”nc"sfon

ooth Projectiye

. o Cury,
algebraic number field k. Is Jac(C) ordinary gyey i”f?”ir; ,deﬁned over g
0;? ) Many Primes of

The answer is affirmative if 8(C)=1 (the .
>1/2 and the equality is attained if i O(nly idenslty o
;,T(C)=2 (A. Ogus).

£ such primes -
’ Primes
fCis of CM—type [D)) (;:

g6. Generic semipositivity theorem for Cotangent bundes

In this and the subsequent sections, all variet;
algebraically c_lo_sed field k of characteristic 0.V R i
Let B € NA(X )32, where X is normal projectiye and » is the d;
sion of X. A torsion free sheaf & on y is said to be generical;meég-
seminegative if, for every numerically effective Q-Cartier divisor p O}I’I X.
its maximal (B, D)-destabilizing subsheaf &, satifis 3, , (& )20 oo
be generically B-semipositive if &* is generically %-semir;egativz Let

O=ésoCé°lC - .Cé"zé"

be the (8B, D)-semistable filtration and Put a,=dy, 5(&,/&:.,). Then
> >a,20 for every D € NA(X), if & is generically B-semipositive.

Theorem 6.1.  Assume that X is smooth in codimension 2. Let & be
a torsion free sheaf on X, with its first Chern class being a numerically
effective Q-Cartier divisor. Assume that & is generically B-semipositive,
Where B=(hy, + - -, h,_,) e NACX)3* (N.B.: not NAKX )6~%). Then the
inequality

ey + - hy 20
holds,

. Proof. Let 0=¢£,C8,C---C&,=& be the (B, D)-semistable filtra-
on. Put@,—g,/8, , r,=rank &, r=rank 6. We have

2¢,(8)|B|= {237, () + 25 <s (G @B
— (257, el @) + (&) — T i@} B,

. istable, the inequality
Where |59 denotes #,. - - & Since ¥, is (B, D)-semistable

(4.7) ShOWS g s

NG, B|
2¢(6)|B|= [Z, =1 g )+{ci&)— Tl )}]|

Fy

= {c}(é’) — > —}‘- c?(%)}l Bl.
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(©)1B]>0, let D=c(&) and put arcie)g|_,

In case Ci .. >a,20. The Hodge index theorep, ygf ')c‘(‘f)l%h

Then we have &> *
ci(9)|B|=rid(G.)|B|=riaici(&)|]

so that
2¢(6)IB|= (1 — 22 riai)ci(6)|B|
={1 —(Zt"tat)ax}cf(g)l%l
=(1—a,)ci(&)|B| >0,
since 3 r;=1, ;1. When ¢3(€)[B[=0, let h=c,(&)+h,

Q-Cartier divisor, where &, is ample and 7 is a smal| posi
number. Again by the Hodge index theorem, we have

be an gy,
live ratiopg

c(@)IB|<ripih*|B|,
where 8,°|B|=5(%,)h|B|. Hence, in this case,

26{€)B|2 — X, B |B| = — (3, r. )2 B|
== el F)h|B))/h|B| = —(c(E)h| B/ B|
=~ el E)ho| BV (2t ¢,(&)hy| B+ 12| B).

If c,(cff)hoISBl:O, the last term vanishes,

On the other hand, if ¢,(&)h,[%]
0, it converges to 0 asftendsto 0. T

his completes the proof.

Remark 6,2, If € is a y . )
: ' mple on ection sur-
face cut out by | mH,|, . R a generic complete inters

"5 My o H, |, we can easily show the inequality

;,r(f;g,ty .;SH;-2>0 by a standard argument (cf, }[,BG]). Yet sucha

Gt Eratance atl;] estronger than the generic (H,, - - -, Hn_z)-semil.)osm\']t)..

inocic - angent bundle of a projective K3 surface is gencr

live (see below), While it is never semi-positive since 2 P

Ns a rational curve (D. Mumford; som
finitely many rational curves.)

13, Theorem 8.4]. Let X be a smooth prOJ"’.;:lf
€ a saturated subsheaf of I and {C\} aﬁ:;’:gz'm!f
weeping out an open subset of X-

h ;
) & iy the.f 0”"“""'&' three Properties for generic 1:
O’ ~Txlc, is q Subbundle -
I L

R

. - A 've L .

an ¢ point x ¢ C,, there exists a rational C";ric il
8€nt space is contained in F at each geomn©
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Z’;{ stionally equivalent to a conic bundle- namely et
s T W whose general fibre is an irreducil;
e 011 AN 0PN subset of X.

Let @%.,. and @, be the graded
cmistable filtrations of Flo, and (7,/7))
| Jbove conditions 2) and 3) are rephrased to:

2) degd(¥:,)>0 for every i
‘ 3) deg o(%,,)>deg a(#,,,) for every pair (i, j).
| Therefore, in case F |, has positive degree and coj
mal destabilizing subbundle of F%|.,, the conditions

omin :
le rationg) .. " ationg]

curve ang o

ncides with the maxi-
2) 3) are satisfied.

Corollary 6.4 (generic semipositivity of cotangent sheaves). Let X p
a normal projective variety of dimension n and let H, ... H . beam 15
Cartier divisors on X. Then the torsion free sheaf p, 0, i; -g.enerical;ly
(H, - - -, H,_o)-semipositive unless X is uniruled. Here p: X'—X denotes
an arbitrary resolution.

Proof. Assume the contrary. Then there will be a numerically
effective Cartier divisor D such that the maximal (H,, ---, H,_., D)
destabilizing subsheaf F’ of p,7;. satisfies 6(F')H,---H,.D>0.
Therefore, when an ample Q-Cartier divisor H is sufficiently near D, then
{F)H,---H, ,H>0. Hence the maximal (H,, - - -, H,_s H)-destabiliz
ing subsheaf F”” of p, T must also satisfy the inequality o(F")H--
H,,H>0. Consequently, the saturation & of the natural image of
¢*F" in Ty, and {C,} will have the three properties in (6.3), whercl% ,{f‘l
stands for the family of complete intersection curves of very high mi“?;)
of o*H, and p*H. This shows that X is uniruled: (Note that C;,ri.cp -
and p, 7%, is isomorphic to ; around C, provided C. 1s2 sk
fact, X i isomorphic to X’ outside a subset of codimension 2.)

ty with only terminal singularities

ion 2 and has

Let X be a normal projective varie
i ooth in codimensior <

(for the definiti : .
ition, see [R3]). X Is sm Pt s numer

Q-Cartier canonical divis[or 2,, X is said to be mmm.z:il r:1f Ky ld | The
Y effective. A uniruled variety does not have a rrsl' Mori, M. Reid, Y
loWing conjecture, due to many people including 2

3 for the
AWamata and J, Koll4r, is of extreme importance

ic varieties:

tfication theory of complex algebra Let X be

. . M]s [MO])‘ ie not
Minima} model conjecture 6.5 (cf. [Ka2], [KNi eld C. .If ;(as,soZI}’
ifu febraic variety defined over the compl.ex s 4 which B

te %, then X will have a normal Pr oject!ve

ln I 9.8 - [
al Singularities and is minimal.
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When dim X =2, the answer is aﬂ”lrma'ti\{e by the classical theoren, of
G. Castelnuovo: there is a unique smoofh mmm.la! model X,. If dimension
>3, the situation is quite different. First, a mn‘anal mode.l, if any, i by
no means unique. Secondly, we cannot avoid lntrOFhfcmg some milq
singularities (at least terminal ones). to construct a minimal mode] [0,
Theorem 1.6], which is not Gorenstein in general but only Q-Gorenstein
i.e., its canonical divisor is a Q-Cartier divisor. Thus, for the study 0}
the cotangent sheaves on minimal models, we have'to analyze torsion free
sheaves with Q-Cartier first Chern classes as was discussed above,

As a direct consequence of (6.1) and (6.4), we have:

Theorem 6.6. Let X be a normal projective variety of dimension p
and p: X'—X an (arbitrary) resolution. Assume that X is smooth i,
codimension 2 and that the canonical divisor Ky € A\(X) is Q-Cartier ang
numerically effective. Then, for any numerically effective Cartier divisor
H, ..., H,_,, the inequality

Cz(X,)(P*Hx)' -(p*H,_))=0
holds.

Proof. We prove the case where X is isomorphic to X’ in codimen-
sion 2, to which general cases are easily reduced. Thus

(X Wo*H,)- - -(p*H, ) =c(p, Q% )H, - - -H,_,

by dimension count. Apply (6.1) to the generically (H,, -- -, H,_,)
semipositive torsion free sheaf p, Q%..

Corollary 6.7. Let X be a projective minimal model and p: X'—=Xa
resolution. Then pyc,(X")H, - - -H,_, is non-negative for any numerically
effective Cartier divisors H,, - - ., H, ,on X. When n=dim X =3, the 1-
cycle pyc(X) is pseudo-effective, i.e., its numerical class is a limit of effec-
tive Q-cycles.

Proof. Terminal singularities have codimension at least 3 in X [R3):
The final statement follows from Kleiman’s criterion for ampleness.

A “*Semi-positivity” of 3¢,— ¢? (characteristic 0)

Let X be a normal projective variety of dimension n with 2 Q-Cartier
czggmcal. divisor K;. Assume that X is non-uniruled and smooth I
Z renm]e nsion 2. I,.et H,, .-, H,_, be ample Cartier divisors on X- Tak;

solution p: X' X such that p is an isomorphism over the smoot
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locus of X. %h; torsion free sheaf 6=p, 0, is generical]
on X, whete 24 denotes (H, -, H, ). Since x 5 nons o *Mibositve
mension 2, the intersection numper K%|B|=k2 T3 iar in codis
ey : LU ARRF R integer
?YI%|=C§(J)H1"‘Ha_2=K§-,(p*Hl)...(p*H )
Proposition 7.1.  Assume that K x IS numerically

K%H,---H,_, is positive. Then the inequality

Be&)—cieNH,- - 1, >0

effective and thar

holds.

Proof. Let 0=¢6,Cé&,C.. - Cé&,=&E be the (B, K)-semistable fil-
tration. Put

?‘ = 61/6‘-1’
ri=rank ,,
a,=5(§,)Kx!%|/K§|SB].

Then we have ra,+---+ra,=1 and a,>--->a,=0 by (6.4). The
total Chern class ¢(&) is the product of the ¢(%,) [BS). In particular,

P:={6c,(6)—2cXE)}| D)
— {6Zt c(%,)+ 6Z£<J cl(gj)cl(gj) s 262(5')} |B]
={6_(cx(%)— 3> ci(Z)+ ci(&)}1B).

Applying the Bogomolov-Gieseker inequality to G,, -y b, we get

P> [3z,>,{ =1 o) — X9} +6ei8)— 368 +ei6)| Bl

i

={ —3Zt>1;1-03(%)+602(6',)—-36¥(«3'1)+Cf(6’)}|53|-

(7.1.1)

By the Hodge index theorem, this yields

(.1.2) P2 (1 3500 K+ 68— 3D

There are three possibilities: 7,=3, 11 =2 and r,=1. § i
: - ity an
Case A: r,>3. Apply the Bogomolov-Gncseker inequality a
the Hodge index theorem to (7.1.2):
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I .
P.z{(l —3Z,~..r:a¥)l<if—3r—cf(é',)}ﬂi.

|
=>(1-32ra)K%|B|=(1 =3, ria ) K% | B
=(1—3a,)K%|B| 20,
since 3o, <re, <D ria;=1. 1f P=0, then «,=1/3, =3 5o that @, —
for i>1. Moreover, ¢,(6,)H,- - - H,_, must be numerically equivalent to
KyH,---H,_, by the Hodge index theorem. This implies that efé€) is

actually numerically equivalent to K, and that ¢,(&/&)) is numerically
trivial.

Case B: r,=2. Let S be a general complete intersection surface of
the linear systems |m,H,|. Then the natural composite map

é, ’s‘—’gfr ls—’g.ls

is injective (all sheaves are locally free because S lies on the smooth
locus of X). Hence, by [Mi2, Remark (4.18)], we have either k(S, c,(&,5)
=0 or 3c,(¢, ls)=ci(&,]s).

Subcase B_: k(S, ¢(6,15))<0. Since (c(€.]5), Ki|s)>0, we have
¢i(&:[s)=const. c}(€,)|B|<0. Now apply the Bogomolov-Gieseker ine-
quality to (7.1.2):

P2{(1-3T 0 radki— cis) )i

=(1 _3Zt>x’t0‘3)K3r|%|
=(1 _30’2201’:'“1)1(3"]23'
={1=3a,(1 —2a)} K% |B|

g{l—3a,(l—Za,)}K}I%I={6(a.—%)z+—§—} B >0.

Subcase: B, : 3c)(6,|)=cX(&, ls). From (7.1.2), we get
P2{(1-32 i na)Kk—c¥(8))}|B).
Again by the Hodge index theorem,
P2(1—4ai—3%,,,ral) K%|9B|
2 {1 -4l 30,35, }K | B

={l—4a—3a,(1 —2a,)}K% | B
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On the other hand, we have 34, < r,

a4 ra, < |, i

P22(1—2a,)m/<§'l23!£0-
If P=0, then a,=1/2, c,

—
— I
—_—

(&) is Numerically ®quivalent to g v and ¢,(6/¢£))
> N@/o,

Case C:ry=1. In this case, . (6,9
) . ’ " X * =" X
Bogomolov’s !emma [Mil, Theorem 2] azsselrls tlh;tcc.-(ﬁ((?)):)ol%, =0, while
(7.1.2) we derive 1€)==V, Hence from

P=(1 —32,»1‘,&?)1(}]93]
>(1 -3a121>1rta’t)K.zl’|%l
={1 “30’1(1 -al)}K.erQ”

B - I
;{1—5(1—3)}Kﬁ,|%|=71<3|53|>o.

This completes the proof of (7.1) and at the same time of Theorem 1.1 if
combined with (6.6).

Proposition 7.2.  Assume that K, is numericall 'y effective and that
{3¢(p482%)— K%)|B|=0. Then one of the following four cases occurs*:

a) K%|B|>0, and the maximal (B, Ky )-destabilizing subsheaf &, of
6 =p4 Q% satisfies rank &,=3, ¢,(6,)=Ky, 3c&,) =K%, where = denotes
the numerical equivalence. The quotient & =¢&[&, has numerically trivial
¢, and is A-semistable for any A € NAX)y™'. c¢(F)=0.

b) K%|B|>0, and the maximal (B, Ky)-destabilizing subsheaf &, of
¢ satisfies rank &, =2, ¢,(&,)=Ky, 3c(6)=K%. F =8/, is U-semistable
(A & NAX)z™") with numerically trivial c,. Moreover, K'x=0.

©) K%|B|=0 but K,|B| is not numerically trivial.

d) Ky is numerically trivial and & is always U-semistable for A

NAx )5t

Proof. Almost everything has already been proved. It ';te:;)?llir:; ‘t)?
verify the numerical triviality of K% in Case b) and the ser:; pbilires
# ina), b) or of & in d). The latter is an obvious conseq

1 -semipositive
orsion free sheaf is again generically B-semipositive.

¢ : of the
x”'-x__,___ 4 ‘bl hilc “.,e have s,mp]c examples
Tema; Case a) js presumably impossible, W

aining three cases.
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c(F) is numerically trivial, then F is (B, D)-semistable for every p o
1

NA(X),-
The equality K% =0 in Case b) follows from:

Lemma 7.4 (a generalization of Bogomolov’s lemma). Le¢; & %o g
vector bundle of rank r contained in the cotangent bundle Q' of 4 Kz gii

manifold X. Then (X, c,(F))=r.
The proof is similar to that in the case r =1.

Remark 7.5. The pseudo-effectivity of ¢, is classical in surface case
(see, for example, [BPV]). Although it is unknown in dimension >4, yet
there is a partial result due to S.T. Yau [Y] which says:

a) If Xis smooth and Ky is numerically trivial, then c,(X) is repre-
sented by a non-negative (2, 2)-form. If ¢,(X)=0 in H*'(X, R), then X is 4
complex torus up to finite étale cover.

b) If X is smooth and Ky is ample, then 2(n+ 1)cy(X)K':*>nK".
If the equality holds, then X is covered by the open unit ball.

a) actually implies the pseudo-effectivity of c,, whereas b) shows
only the positivity of ¢,(X) measured by the power of a specific ample
divisor K. It does not exclude the possibility of {2(n+ Dey(X)—nK*}|B|
being negative for general B € NA(X )o . For instance, let S be a surface
with 3¢,(S)=ci(S) and X be a product S X V, where V is a manifold with
ample canonical divisor. If (acy(X)— c}(X)) has non-negative intersection
with every H*~* (H is ample), then we have a=3. This example shows
that our result (7.1) is best possible as such even in case X is smooth with
ample canonical class.

Remark 7.6. Theorem 1.1 is redundant for the proof of Theorem
l.2. which can be derived from (6.6) only. It is, however, not only inter-
e§tmg in its own right but also of some use for the analysis of canonical
rings of threefolds with ample canonical classes [A]

§ 8. Non-negativity of the Kodaira dimension of minimal threefolds: the
case where X is Gorenstein or K% is numerically non-trivial

A) The Gorenstein case

i I-.ct X b‘e.a normal projective Gorenstein threefold with only canon-
ical singularities (X is Gorenstein if and only if K, is a Cartier divisof

because canonical singularit
gulariees are C - have
the following: ¢ Cohen-Macauley [E]). Then we
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em 8.1. Assume thgy the canonicq divi
Theor ISsor K.

numerically effective. Then the Eyjoy v ; .

1 ] act : r € Pic a
In particular, either p(X)=I*(X, 0,k )y o 1 MK, O,) i “olteldl,
and K(X) Z0- N IO =R(X, 0.y 45 e

x) IS non-zero

Lemma 8.2 [R2, Corollary 2.17], If x

F X 2 A% is
Gorenstein sznomcal sz{zgularmes, then there exjsg 2 r/;feefold with only
—X, which is proper birational, such that 4 partial resolution I x*
(]) f*Kx =Kx';
and that

Q) X’. has .only hypersurface singularities ie
space is of dimension <4 at every closed point, el

Let X '. be as in the above lemma. Then, by successive i
transformations along smooth curves and closed points, we msn‘?'dal
smooth resolution g: ¥—X’. The condition that X has on] c‘:mta"'1 1
singularities means that the fibre of each monoidal transforriatio;) nilsca
cubic or conic surface in P* or a conic curve in P*. In particular, if onz
represents Ky in the form g*K, 44, the image g(4) of the co;rection
term is a finite subset of double points on X”. Now one easily checks:

the Zariski tangent

Lemma 8.3 (cf. [R, p. 305]). Under the same hypothesis as in (8.2),
dcy(Y)=0.

Remark 8.4. A more elementary (though less informative) proof of
(8.3) is as follows: By duality, we have the identity

X(Y, O4(K,) = — (Y, Op) = — 21X, Ox)=X(X, Ox(K2) =2Y, O:(K)).
Writing down the Euler characteristics explicitly by the Riemann-Roch
formula, we obtain (8.3).

Proof of Theorem 8.1. Let g: Y—>X’
Y—X the composite map. Then Ky=p*Kxt

acteristic of Y is given by

1(Oy)=(1/29)c(Y)e¥)
— _(1/24)(p*K ) +de(Y)

,f: X’—X be as above and p:
4, so that the Euler char-

Now, by Lemma 8. 3
2(0y)=—( 124)(p*Kx)e(Y)
] or 6.6 implies that

Since K, is numerically effective, Theorem 1.
*Kxfz( Y );0

PX)+g(X)—12 _u0y)=01/24p
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and a fortiori either p(X) or g(X) is non-zero. If p,(X)>0, they K(X)
>0 by the very definition of the Kodaira dlmer!snon.. In case a(X) i
positive, the Albanese morphism a: ¥ —AlIb(Y) gives rise to a Surjectjye
morphism «’: Y—Z with x(Z)=0 and connected. fibres. As y s not
uniruled, the general fibre Y, is neither ruled nor rational and hence x(Y,)
>0 by the classification of curves and sqrfaces. Thus the assertion x(X)
>0 is reduced to litaka’s famous conjectures C,, and C,, (see [un),
which have been affirmatively solved by Viehweg [V1] and Viehweg-Ueno

[V2], [U3].
B) The Case where K’ is numerically non-trivial

Let X be a normal projective threefold with only isolated canonicy
singularities. Assume that the Q-Cartier divisor K is numerically effec.
tive and that K% € 4*(X)y=A,(X), is numerically non-zero. Let r e N pe
the index of X, the least positive integer such that rK, is an integral
Cartier divisor. Let p: Y—X be a resolution of the singularities. By

the Riemann-Roch theorem,
X(Xs QX(WKI)) =x( Y3 P*ax(m’Kx))
=(mr/12)2m'r* —3mr+ 1)K+ (mr/12)(0* K, c(Y))+ (Y, 0,).

In case X(Y, 0y)<0, the proof of (8.1) gives the non-negativity of the
Kodaira dimension. Assume that %(Y, Oy) is positive. Then, from The-
orem I.] or 6.6, we infer that

WY, p*Ox(mrKy))+ H(Y, 0*0 1 (mrKy))
=T, p*Ox(mrKy)) = X(Y, 0y)>0.

Thus, in this case, either H(Y, p*0(mrK,)) or H(Y, p*0(mrKy) is
non-trivial.

Lemma 8.5. H(Y, p*0,(mrK x)) vanishes (mr = ?2).

Proof. Let S be a smooth sufficiently ample surface in X and
consider the long exact sequence

H'(S, OstmrKy+ $)— H(X, 0 (mrK,))—> H¥(x, Ox(mrK,+5))
associated with the short exact sequence

Ox(mrKy)—> 0 (mrK , + § )——>O(mrK, +S).

Since S lies in the smooth locus of X, Ky|s is a numerically effective

integral divisor with positive self-intersection and Ky —=(K,+5)ls by the
adjunction formula, Hence ‘ |
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: =K,
by the Muqurd or Kawamata Vanishing th, x|
first term vagushcs, while the thirg termg 2eorem [R]
whenever S is sufficiently ample [FAC) (X, Ox(mrk.

nonical singularities [E] yields our clajn

Corollary 8.6. Let r be the index of K and n
X 1q

-5 = . os ., fve | > .
m'r._Z_Z lf X(X,. (V_r)>0, then mrK_r IS /mear[y eqllira;:» ’“(’mnger With
divisor. In particular, the mr-genus p, of X is potii sm;;,m an effective

2 50 that k(X)>0,

Remark 8.7. When X is not Gorenste:

: ; ; enstein, (X, . w
even if Ky is ample. -The simplest example is the (follg\;i)n;?n fe PrRILIve
hype'relhptl.c curve with the canonical involution . (i=1,2 3) eth;,t beba
thc:l llmt,oj\l’ltll)ont}?n G XL, acting by ¢(x,, x,, x,):(,:(r;) ,'(r) ‘(lr ;;
and 1€ ¢ the quotient e T Rzl G\NXy),
s quotient (C, X C,X Cy)/e. Then, an easy computation

h'(X, Oy)=h*(X, 0,) =0,
(X, 0,) =g(C))g(C,)+g(C.)g(C,) +8(Cyg(C).

The index of K, is of course 2.
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