DUE DATE: JAN. 31, 2008

1. In class we distinguished between two properties for a number n: n is irreducible if its only positive factors are 1 and n, and n is prime if whenever n divides a product ab it must divide either a or b. In class we proved that every irreducible number is prime (this was "Euclid's Lemma"). I said that the two properties were equivalent, but we didn't prove the other direction. So:

Prove that every prime number is irreducible.

- 2. There is a rule for testing divisibility by 13 much like the rule for testing divisibility by 7. If $n = a_k a_{k-1} \cdots a_0$ is the decimal expansion of n (e.g., $n = a_k \cdot 10^k + a_{k-1} \cdot 10^{k-1} + \cdots a_2 \cdot 10^2 + a_1 \cdot 10 + a_0$) then 13|n if and only if 13 divides $\frac{n-a_0}{10} + 4a_0$.
 - (a) Use the rule to check if n = 32032 is divisible by 13.
 - (b) Prove that the rule is correct.
- 3. Another divisibility test for 7 involves taking the alternating sum of digits in groups of three, with the sign positive for the lowest group of three. As an example

$$n = 1987446881 \equiv -1 + 987 - 446 + 881 = 1421 \equiv -1 + 421 = 420 \pmod{7}$$
.

Since 420 is divisible by 7, we conclude that 1987446881 is divisible by 7.

Surprisingly, the same reductions also work for 11 and 13: $1987446881 \equiv 420 \pmod{11}$ and $1987446881 \equiv 420 \pmod{13}$.

Prove that for any positive integer $n, n \equiv (\text{alternating sum of groups of three digits}) \pmod{p}$ if p = 7, 11, or 13.

4. Modular arithmetic can transform many questions that seem opaque into questions that are quite easy to answer. Consider the statement below:

If $p \ge 5$ is a prime number, then $p^2 + 2$ is always a composite number.

Without looking ahead, think about how you would try and approach demonstrating this. Does it seem very easy?

Now:

- (a) List the squares mod 3.
- (b) Prove that if k is not a multiple of 3, then 3 divides $k^2 + 2$.
- (c) Prove that if p is a prime number and $p \ge 5$ then $p^2 + 2$ is a composite number.

5. Some more modular arithmetic.

- (a) Compute the remainders of $7, 7^2, 7^3, 7^4, 7^5$, and 7^6 when divided by 19.
- (b) Compute the remainder of 7^{2008} when divided by 19.
- (c) Compute the remainders of 8, 8², 8³, 8⁴, 8⁵, and 8⁶ when divided by 19.
- (d) Compute the remainder of 8^{2008} when divided by 19.
- (e) Compute the remainder of 56^{2008} when divided by 19.

HINTS:

- 1. Finding the remainder when dividing by 19 is another way of talking about computing mod 19.
- 2. Calculations mod 19 behave well with respect to arithmetic operations (multiplying, taking powers, etc).
- 3. So you should definitely *not* be raising any number to the power 2008 and then computing the remainder.
- 4. $56 = 7 \cdot 8$.