DUE DATE: MAR. 13, 2008

- 1. Let $a(x) = (x-2)^2$ and $b(x) = (x-3)^2$ in $\mathbb{R}[x]$.
 - (a) Find polynomials u(x) and v(x) in $\mathbb{R}[x]$ so that a(x)u(x) + b(x)v(x) = 1.
 - (b) Find reconstruction polynomials $c_1(x)$, $c_2(x) \in \mathbb{R}[x]$ so that given any $f_1(x)$ and $f_2(x)$ in $\mathbb{R}[x]$ the polynomial $f(x) = c_1(x)f_1(x) + c_2(x)f_2(x)$ satisfies

$$f(x) \equiv f_1(x) \pmod{a(x)}$$
 and $f(x) \equiv f_2(x) \pmod{b(x)}$.

Your solution should include the polynomials $c_1(x)$ and $c_2(x)$, and an explanation why they have the properties above.

(c) For any polynomial $f(x) \in \mathbb{R}[x]$ the numbers f(2), f(3), f'(2), and f'(3), determine the polynomial f(x) uniquely up to multiples of $m(x) = (x-2)^2(x-3)^2$, i.e., mod m(x). The remainder when dividing by m(x) is a polynomial of degree ≤ 3 , and so can be written in the form $c_0 + c_1x + c_2x^2 + c_3x^3$.

Find the formulas for c_0 , c_1 , c_2 , and c_3 in the remainder above in terms of the numbers $a_0 = f(2)$, $a_1 = f'(2)$, $b_0 = f(3)$, and $b_1 = f'(3)$.

- 2. Let p be a prime number, and $F = \mathbb{Z}/p\mathbb{Z}$. Is it possible that there are irreducible polynomials of every degree d in F[x]? Let's at least check some small cases:
 - (a) How many monic polynomials of degree exactly d are there in F[x]?
 - (b) How many reducible monic polynomials are there of degree 2 in F[x]? (HINT: Unique Factorization).
 - (c) How many monic irreducible polynomials are there of degree 2 in F[x]?
 - (d) How many monic irreducible polynomials are there of degree 3 in F[x]?

- 3. Suppose that F is a field, and that $m(x) \in F[x]$ is a nonzero polynomial. To make notation easier, let R be the ring R = F[x]/m(x)F[x].
 - (a) If m(x) is reducible, show that R is not a domain.
 - (b) If m(x) is irreducible, show that R is a domain.
 - (c) Suppose that m(x) is irreducible, and $a \in R$ a nonzero element. Explain why the map $f: R \longrightarrow R$ given by multiplication by a (i.e. f(b) = ab for any $b \in R$) is injective. (HINT: First check that the map is linear).
 - (d) If m(x) is irreducible, show that for any nonzero $a \in R$ the multiplication by a map f defined above is also surjective.

Possible method #1: Isn't R some kind of vector space over F?

Possible Method #2: Explicitly (using gcd(a(x), m(x))), where a(x) is some element in the equivalence class a) show how to get any given element b in the image.

- (e) Use part (d) to show that if m(x) is irreducible then R is a field.
- 4. Let $F = \mathbb{Z}/2\mathbb{Z}$.
 - (a) Show that $m(x) = x^3 + x + \overline{1}$ is an irreducible polynomial in F[x].
 - (b) Let R = F[x]/m(x)F[x]. By part (a) and question 3 above, R is a field. Write out the multiplication table for this field (you can omit multiplication by zero).