Approximations in setting up Riemann Sums

1. The area of a ring.

Last class, the issue came up of how to approximate the area of a circular ring, with inner radius \(r \) and outer radius \(r + \Delta r \).

The exact area is

\[
\pi(r + \Delta r)^2 - \pi r^2 = \pi(r^2 + 2r \Delta r + (\Delta r)^2 - r^2) = 2\pi r \Delta r + \pi(\Delta r)^2.
\]

There were some people who felt that \(2\pi r \Delta r \) would do as well, even though it isn’t the exact formula for the area (it’s missing the \(\pi(\Delta r)^2 \) term).

In fact, that’s correct – when setting up the Riemann sum you can simply ignore the \(\pi(\Delta r)^2 \) part.

How can using an incorrect formula give you a correct answer? Read on to find out.

2. \(\Delta x \) versus \((\Delta x)^2 \).

Suppose we’re trying to compute a Riemann sum over the interval \([0, 10]\), adding up some formula that involves both \(\Delta x \) and \((\Delta x)^2 \). (It could be the formula above with \(x \) in place of \(r \) for example.)

Our plan, as always for Riemann sums, is to divide the interval up into \(n \) pieces, evaluate the function on the pieces, and then add up the values on the pieces.

That means we’ll be adding up \(n \) terms. We’ll see a term involving \(\Delta x \) appear \(n \) times in the sum, and a term involving \((\Delta x)^2 \) appear \(n \) times in the sum. As we increase \(n \),
both Δx and $(\Delta x)^2$ decrease, but since we’ll be adding them up n times, it might not be so clear what will happen.

Here’s a little table for various values of n, of n, Δx, $(\Delta x)^2$, $n \cdot \Delta z$, and $n \cdot (\Delta x)^2$:

<table>
<thead>
<tr>
<th>n</th>
<th>Δx</th>
<th>$(\Delta x)^2$</th>
<th>$n \cdot \Delta x$</th>
<th>$n \cdot (\Delta x)^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>100</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>0.1</td>
<td>0.01</td>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>1000</td>
<td>0.01</td>
<td>0.0001</td>
<td>10</td>
<td>0.01</td>
</tr>
<tr>
<td>10000</td>
<td>0.001</td>
<td>0.000001</td>
<td>10</td>
<td>0.001</td>
</tr>
<tr>
<td>10000</td>
<td>0.0001</td>
<td>0.00000001</td>
<td>10</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

(Note: the interval is $[0, 10]$, so $\Delta x = \frac{10}{n}$.)

You can see that as n increases, the contribution from the $n \cdot \Delta x$ term remains constant, but the contribution from the $n \cdot (\Delta x)^2$ term is disappearing. That seems to imply that its contribution to the sum will also disappear as n gets large.

Let’s try this out with a concrete example involving density on a circular shape.

3. Two computations of the mass.

Just to pick a concrete example, let’s suppose that we have a circular shape of radius 10, and that the density of this shape at a distance r from the center is given by

$$\rho(r) = \sqrt{100 - r^2}.$$

What is the total mass of the circular shape?

If we divide the circle up into n concentric rings, the mass of each ring is either

$$\sqrt{100 - r^2} \cdot (2\pi r \Delta r + \pi (\Delta r)^2)$$

using the correct expression for the area, or

$$\sqrt{100 - r^2} \cdot 2\pi r \Delta r$$

using the approximate expression for the area.

That means we now have two possible candidates for a sum which approximates the mass:

$$\sum_{i=1}^{n} (\sqrt{100 - r_i^2}) \cdot (2\pi r_i \Delta r + \pi (\Delta r_i)^2) \quad \text{or} \quad \sum_{i=1}^{n} (\sqrt{100 - r_i^2}) \cdot 2\pi r_i \Delta r.$$
Let’s compare the results given by these sums as \(n \) gets large.

\[
\begin{array}{ccc}
\begin{array}{c}
 n \\
\hline
1 \\
10 \\
100 \\
10000 \\
100000 \\
1000000 \\
\end{array}
& \begin{array}{c}
\sum_{i=1}^{n}(\sqrt{100 - r_i^2}) \cdot (2\pi r_i \Delta r + \pi(\Delta r)^2) \\
\sum_{i=1}^{n}(\sqrt{100 - r_i^2}) \cdot 2\pi r_i \Delta r \\
\end{array}
& \begin{array}{c}
3141.592655 \\
2291.178682 \\
2117.320204 \\
2094.640009 \\
2094.419706 \\
2094.397755 \\
\end{array}
\end{array}
\]

As you can see, as \(n \) gets large, the sum without the \((\Delta r)^2\) term is giving the same answer as the sum with the \((\Delta r)^2\) term.

In other words: The contribution of the \((\Delta r)^2\) term makes no difference in the limit, and hence no difference to the final answer.

That’s a powerful trick: When setting up our Riemann sums, we can ignore terms which have \((\Delta r)^2\), or in general, powers of \((\Delta r)\) higher than one.

This handout can (soon) be found at

http://www.mast.queensu.ca/~mikeroth/calculus/calculus.html

E-mail address: mikeroth@mast.queensu.ca