Summary Notes for

Vector Calculus

Differentiability
$\diamond f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at \vec{x}_{\circ} if there is a vector \vec{a} such that

$$
\lim _{\vec{x} \rightarrow \vec{x}_{o}} \frac{\left|f(\vec{x})-f\left(\vec{x}_{0}\right)-\vec{a} \cdot\left(\vec{x}-\vec{x}_{o}\right)\right|}{\left\|\vec{x}-\vec{x}_{o}\right\|}=0
$$

If such an \vec{a} exists it must be $\left(\frac{\partial f}{\partial x_{1}}\left(\vec{x}_{\mathrm{o}}\right), \frac{\partial f}{\partial x_{2}}\left(\vec{x}_{\mathrm{o}}\right), \ldots, \frac{\partial f}{\partial x_{n}}\left(\vec{x}_{\mathrm{o}}\right)\right)$ called $D(f)\left(\vec{x}_{\mathrm{o}}\right)$.
$\diamond F: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is differentiable at \vec{x}_{o} if there is a $n \times m$ matrix A such that

$$
\lim _{\vec{x} \rightarrow \vec{x}_{0}} \frac{\left\|F(\vec{x})-F\left(\vec{x}_{o}\right)-A\left(\vec{x}-\vec{x}_{\mathrm{o}}\right)\right\|}{\left\|\vec{x}-\vec{x}_{\mathrm{o}}\right\|}=0
$$

If such an A exists it must be

$$
\left(\begin{array}{ccc}
\frac{\partial F_{1}}{\partial x_{1}}\left(\vec{x}_{\mathrm{o}}\right) & \cdots & \left.\frac{\partial F_{1}}{\partial x_{m}}\left(\vec{x}_{\mathrm{o}}\right)\right) \\
\vdots & & \vdots \\
\frac{\partial F_{n}}{\partial x_{1}}\left(\vec{x}_{\mathrm{o}}\right) & \cdots & \left.\frac{\partial F_{n}}{\partial x_{m}}\left(\vec{x}_{\mathrm{o}}\right)\right)
\end{array}\right)
$$

called $D(F)\left(\vec{x}_{o}\right)$.
\diamond If all the partials $\frac{\partial F_{i}}{\partial x_{j}}$ are continuous on a neighbourhood of \vec{x}_{o} then F is differentiable at \vec{x}_{o}.

Curves

\diamond parametrization: $\vec{c}(t)=(x(t), y(t), z(t))$, for $a \leq t \leq b$
\diamond tangent vector: $\vec{c}^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)$
\diamond speed: $v=\left|\vec{c}^{\prime}(t)\right|=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}}$
\diamond unit tangent: $T(t)=\vec{c}^{\prime}(t) /\left|\vec{c}^{\prime}(t)\right|$
\diamond arc length $s=\int_{a}^{b}\left|\vec{c}^{\prime}(t)\right| d t$
\diamond arc length parametrization: $s(t)$ gives the length of the curve from a to $t: s(t)=\int_{a}^{t}\left|\vec{c}^{\prime}(u)\right| d u$, thus $\frac{d s}{d t}=\left|\vec{c}^{\prime}(t)\right|$, i.e. $d s=\left|\vec{c}^{\prime}(t)\right| d t$.

Cylindrical Coordinates
$\left\{\begin{array}{l}x=r \cos (\vartheta) \\ y=r \sin (\vartheta) \\ z=z\end{array} \quad\left\{\begin{array}{l}0 \leq \theta \leq 2 \pi \\ 0 \leq r\end{array}\right.\right.$
$r=\begin{aligned} & z=z \\ & =\sqrt{x^{2}+y^{2}}\end{aligned}$
$\vartheta= \begin{cases}\tan ^{-1}(y / x) & x>0 \\ \tan ^{-1}(y / x)+2 \pi & x>0, y<0 \\ \tan ^{-1}(y / x)+\pi & x<0\end{cases}$
$d V=r d r d \vartheta d z$

Spherical Coordinates

$x=\rho \cos (\vartheta) \sin (\phi), \quad o \leq \phi \leq \pi$
$y=\rho \sin (\vartheta) \sin (\phi), \quad 0 \leq \vartheta \leq 2 \pi$
$z=\rho \cos (\phi), \quad 0 \leq \rho$
$\rho=\sqrt{x^{2}+y^{2}+z^{2}}$
$\vartheta= \begin{cases}\tan ^{-1}(y / x) & x>0 \\ \tan ^{-1}(y / x)+2 \pi & x>0, y<0 \\ \tan ^{-1}(y / x)+\pi & x<0\end{cases}$
$\phi=\sin ^{-1}\left(\frac{\sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)$
$d V=\rho^{2} \sin (\phi) d \rho d \phi d \vartheta$
General Change of Coordinates

$$
\begin{aligned}
& x=x(u, v) \quad \frac{\partial(x, y)}{\partial(u, v)}=\operatorname{det}\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\
y=y(u, v) \\
\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v}
\end{array}\right) \\
& \iint_{D} f(x, y) d x d y= \\
& \iiint_{D^{\prime}} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
\end{aligned}
$$

where $D^{\prime} \ni(u, v) \mapsto(x, y) \in D$

Gradient

\diamond del or nabla: $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$
$\diamond \operatorname{grad}(f)=\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$
$\diamond \nabla f$ points in the direction of greatest increase of f.
$\diamond|\nabla f|$ is the rate of increase in this direction.
$\diamond \mathrm{D}_{u}(f)$ is the rate of change of f in the direction of the unit vector $\vec{u}: \mathrm{D}_{u}(f)=\vec{u} \cdot \nabla f$
$\diamond \nabla f$ is perpendicular to the level sets of $f:$ if $f(x, y)$ is a scalar field on \mathbb{R}^{2} then ∇f is perpendicular to the level curves of f; if $f(x, y, z)$ is a scalar field on \mathbb{R}^{3} then ∇f is perpendicular to the level surfaces of f.

Line Integrals

$\diamond C$ is a curve parametrized by
$\vec{c}(t)=(x(t), y(t), z(t))$ for $a \leq t \leq b, F$ is a vector field on \mathbb{R}^{3}.
$\diamond \int_{C} F \cdot d \vec{s}=\int_{a}^{b} F(\vec{c}(t)) \cdot \vec{c}^{\prime}(t) d t$ where the curve is traversed from $\vec{c}(a)$ to $\vec{c}(b)$.
$\diamond-C$ is the same curve as C geometrically, but traversed in the opposite direction.
$\diamond \int_{-C} F \cdot d \vec{s}=-\int_{C} F \cdot d \vec{s}$
$\diamond \int_{C} \nabla f \cdot d \vec{s}=f($ end $)-f$ (beginning) $=$
$f(\vec{c}(b))-f(\vec{c}(a))$
\diamond for a scalar field we set:
$\int_{C} f(x, y) d s=\int_{a}^{b} f(\vec{c}(t))\left|\vec{c}^{\prime}(t)\right| d t$
$\int_{C} f(x, y) d x=\int_{a}^{b} f(\vec{c}(t)) x^{\prime}(t) d t$
$\int_{C} f(x, y) d y=\int_{a}^{b} f(\vec{c}(t)) y^{\prime}(t) d t$

Conservative Fields

\diamond a vector field F is conservative if the line integral $\int_{C} F \cdot d \vec{s}=$ o for any closed loop C, equivalently for any path $C, \int_{C} F \cdot d \vec{s}$ depends only on the endpoints of C.
$\diamond \nabla f$ is conservative for any scalar field f.
\diamond if F is conservative on an open connected region
D, then $F=\nabla f$ where $f(x, y)=\int_{(a, b)}^{(x, y)} F \cdot d \vec{s}$ and the line integral is taken along any path in D joining (a, b) to (x, y).
\diamond a region D is simply connected if it has no 'holes'. \diamond if $F=P(x, y) \vec{i}+Q(x, y) \vec{j}$ and $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$ then F is conservative provided that F is continuous on an open simply connected region D and the first partials of P and Q are continuous on D.

Green's Theorem

$\diamond \int_{C} P d x+Q d y=\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d A$ where C is a simple closed curve in the plane, D is the interior of C, and C is traversed with the interior to the left.

Circulation and Curl

$\diamond \operatorname{curl}(F)=\nabla \times F=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R\end{array}\right|=$
$\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)$ for
$F=(P(x, y, z), Q(x, y, z), R(x, y, z))$.
\diamond if F is a vector field and C is a closed curve, the circulation of F around C is $\int_{C} F \cdot d \vec{r}$.
\diamond if \vec{d} is a unit vector the component of $\operatorname{curl}(F)(x, y, z)$ in the direction of \vec{d} is
$\lim _{\text {area } \rightarrow 0} \frac{\text { circulation around } C}{\text { area in } C}$ where the limit is taken
over the family of curves in the plane perpendicular to \vec{d} which shrink to the point (x, y, z).

Surfaces

\diamond a surface S is parametrized by
$\vec{r}(u, v)=(x(u, v), y(u, v), z(u, v))$ for $(u, v) \in D$ if $\vec{r}(u, v)$ runs over S as (u, v) runs over D.
\diamond the sphere of radius a is parametrized by
$\vec{r}(\phi, \vartheta)=(a \cos (\vartheta) \sin (\phi), a \sin (\vartheta) \sin (\phi)$,
$a \cos (\phi)), \circ \leq \phi \leq \pi, \circ \leq \vartheta \leq 2 \pi$
$\diamond d S=\left|\vec{T}_{u} \times \vec{T}_{v}\right| d u d v$ gives the element of surface
area.
$\diamond \operatorname{area}(S)=\iint_{S} d S=\iint_{D}\left|\vec{T}_{u} \times \vec{T}_{v}\right| d u d v$.
\diamond for the parametrization of the sphere of radius a given above $\left|\vec{T}_{\phi} \times \vec{T}_{\vartheta}\right|=a^{2} \sin (\phi)$
\diamond a parametrization $\vec{r}(u, v)$ of a surface S orients a surface via the normal vector $\vec{T}_{u} \times \vec{T}_{v}$
\diamond a simple closed curve C which bounds an oriented surface S inherits an orientation from S : an upstanding person will traverse C so that S is to her left.

Flux through a Surface

\diamond if F a vector field on a surface S parametrized by $\vec{r}(u, v)=(x(u, v), y(u, v), z(u, v))(u, v) \in D$, the flux of F through S is
$\iint_{S} F \cdot d \vec{S}=\iint_{D} F(\vec{r}(u, v)) \cdot\left(\vec{T}_{u} \times \vec{T}_{v}\right) d u d v$

Divergence

\diamond if $F=P \vec{i}+Q \vec{j}+R \vec{k}$ is a vector field, then
$\operatorname{div}(F)=\nabla \cdot F=\left(\frac{\partial P}{\partial x}, \frac{\partial Q}{\partial y}, \frac{\partial R}{\partial z}\right)$.
$\diamond \operatorname{div}(F)(x, y, z)=\lim _{\text {vol } \rightarrow \text { o }} \frac{\text { the flux of } F \text { through } S}{\text { volume enclosed by } S}$ where the limit is taken over the family of closed surfaces which contain (x, y, z).

Vector Identities

$\diamond\left\{\begin{array}{l}\text { scalar } \\ \text { fields }\end{array}\right\} \xrightarrow{\text { grad }}\left\{\begin{array}{l}\text { vector } \\ \text { fields }\end{array}\right\} \xrightarrow{\text { curl }}\left\{\begin{array}{c}\text { vector } \\ \text { fields }\end{array}\right\} \xrightarrow{\text { div }}\left\{\begin{array}{c}\text { scalar } \\ \text { fields }\end{array}\right\}$
$\diamond \operatorname{curl}(\operatorname{grad}(f))=o$ for any scalar field f
$\diamond \operatorname{div}(\operatorname{curl}(F))=$ o for any vector field F
\diamond if $\operatorname{curl}(F)=$ o then $F=\nabla f$ for a scalar field f provided F is defined on all of \mathbb{R}^{3} and the first partials of F are continuous
\diamond if $\operatorname{div}(F)=$ o then $F=\operatorname{curl}(G)$ for some vector field G provided F is defined on all of \mathbb{R}^{3} and the first partials of F are continuous.

Stokes's Theorem

$\diamond \iint_{S} \operatorname{curl}(F) \cdot d \vec{S}=\int_{\partial S} F \cdot d \vec{s}$ where F is a vector field on S with continuous first partials, S is an oriented surface bounded by a simple closed curve ∂S oriented by S.

Divergence Theorem

$\diamond \iint_{\partial V} F \cdot d \vec{S}=\iiint_{V} \operatorname{div}(F) d V$ where F is a vector field on the simple solid region V with continuous first partials, and the boundary surface ∂V is oriented with an outward pointing normal.

