
Summary Notes for

Vector Calculus

Differentiability
� f : U ⊂ R

n → R is differentiable at �x0 if there is a
vector �a such that

lim
�x→�x0

∣∣ f (�x) − f (�x0) − �a · (�x − �x0)
∣∣

‖�x − �x0‖ = 0

If such an �a exists it must be
(

∂ f
∂x1

(�x0),
∂ f
∂x2

(�x0), . . . ,
∂ f
∂xn

(�x0)) called D( f )(�x0).
� F : U ⊂ R

m → R
n is differentiable at �x0 if there is

a n × m matrix A such that

lim
�x→�x0

∥∥F(�x) − F(�x0) − A(�x − �x0)
∥∥

‖�x − �x0‖ = 0

If such an A exists it must be


∂ F1
∂x1

(�x0) · · · ∂ F1
∂xm

(�x0))

...
...

∂ Fn
∂x1

(�x0) · · · ∂ Fn
∂xm

(�x0))




called D(F)(�x0).
� If all the partials ∂ Fi

∂x j
are continuous on a

neighbourhood of �x0 then F is differentiable at �x0.
Curves

� parametrization: �c(t) = (x(t), y(t), z(t)), for
a ≤ t ≤ b
� tangent vector: �c ′(t) = (x ′(t), y′(t), z′(t))
� speed: v = |�c ′(t)| = √

x ′(t)2 + y′(t)2 + z′(t)2

� unit tangent: T (t) = �c ′(t)/|�c ′(t)|
� arc length s = ∫ b

a |�c ′(t)| dt
� arc length parametrization: s(t) gives the length of
the curve from a to t : s(t) = ∫ t

a |�c ′(u)| du, thus
ds
dt = |�c ′(t)|, i.e. ds = |�c ′(t)| dt .

Cylindrical Coordinates{
x = r cos(ϑ)

y = r sin(ϑ)

z = z

{ 0 ≤ θ ≤ 2π

0 ≤ r

r = √
x2 + y2

ϑ =



tan−1(y/x) x > 0
tan−1(y/x) + 2π x > 0, y < 0
tan−1(y/x) + π x < 0

dV = r dr dϑ dz

Spherical Coordinates
x = ρ cos(ϑ) sin(φ), 0 ≤ φ ≤ π

y = ρ sin(ϑ) sin(φ), 0 ≤ ϑ ≤ 2π

z = ρ cos(φ), 0 ≤ ρ

ρ = √
x2 + y2 + z2

ϑ =



tan−1(y/x) x > 0
tan−1(y/x) + 2π x > 0, y < 0
tan−1(y/x) + π x < 0

φ = sin−1
( √

x2+y2√
x2+y2+z2

)
dV = ρ2 sin(φ) dρ dφ dϑ

General Change of Coordinates

x = x(u, v)

y = y(u, v)
∂(x,y)

∂(u,v)
= det

(
∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

)
∫∫

D f (x, y) dx dy =∫∫
D′ f (x(u, v), y(u, v))

∣∣∣ ∂(x,y)

∂(u,v)

∣∣∣ du dv

where D′ 	 (u, v) 
→ (x, y) ∈ D

Gradient
� del or nabla: ∇ = ( ∂

∂x , ∂
∂y , ∂

∂z )

� grad( f ) = ∇ f = (
∂ f
∂x ,

∂ f
∂y ,

∂ f
∂z )

� ∇ f points in the direction of greatest increase of f .

� |∇ f | is the rate of increase in this direction.
� Du( f ) is the rate of change of f in the direction of
the unit vector �u: Du( f ) = �u · ∇ f
� ∇ f is perpendicular to the level sets of f : if f (x, y)

is a scalar field on R
2 then ∇ f is perpendicular to the

level curves of f ; if f (x, y, z) is a scalar field on R
3

then ∇ f is perpendicular to the level surfaces of f .

Line Integrals
� C is a curve parametrized by
�c(t) = (x(t), y(t), z(t)) for a ≤ t ≤ b, F is a vector
field on R

3.
� ∫

C F · d�s = ∫ b
a F(�c(t)) · �c ′(t) dt where the curve is

traversed from �c(a)to �c(b).
� − C is the same curve as C geometrically, but
traversed in the opposite direction.
� ∫

−C F · d�s = − ∫
C F · d�s

� ∫
C ∇ f · d�s = f (end) − f (beginning) =

f (�c(b)) − f (�c(a))

� for a scalar field we set:
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∫
C f (x, y) ds = ∫ b

a f (�c(t)) |�c ′(t)| dt∫
C f (x, y) dx = ∫ b

a f (�c(t)) x ′(t) dt∫
C f (x, y) dy = ∫ b

a f (�c(t)) y′(t) dt

Conservative Fields
� a vector field F is conservative if the line integral∫

C F · d�s = 0 for any closed loop C , equivalently for
any path C ,

∫
C F · d�s depends only on the endpoints

of C .
� ∇ f is conservative for any scalar field f .
� if F is conservative on an open connected region
D,then F = ∇ f where f (x, y) = ∫ (x,y)

(a,b)
F · d�s and

the line integral is taken along any path in D joining
(a, b) to (x, y).
� a region D is simply connected if it has no ‘holes’.
� if F = P(x, y)�i + Q(x, y) �j and ∂ Q

∂x = ∂ P
∂y then F is

conservative provided that F is continuous on an
open simply connected region D and the first partials
of P and Q are continuous on D.

Green’s Theorem
� ∫

C P dx + Q dy = ∫∫
D

∂ Q
∂x − ∂ P

∂y d A where C is a
simple closed curve in the plane, D is the interior of
C , and C is traversed with the interior to the left.

Circulation and Curl

� curl(F) = ∇ × F =
∣∣∣∣∣∣

�i �j �k
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣ =
(

∂ R
∂y − ∂ Q

∂z , ∂ P
∂z − ∂ R

∂x , ∂ Q
∂x − ∂ P

∂y

)
for

F = (
P(x, y, z), Q(x, y, z), R(x, y, z)

)
.

� if F is a vector field and C is a closed curve, the
circulation of F around C is

∫
C F · d�r .

� if �d is a unit vector the component of
curl(F)(x, y, z) in the direction of �d is

lim
area→0

circulation around C

area in C
where the limit is taken

over the family of curves in the plane perpendicular
to �d which shrink to the point (x, y, z).

Surfaces
� a surface S is parametrized by
�r(u, v) = (

x(u, v), y(u, v), z(u, v)
)

for (u, v) ∈ D if
�r(u, v) runs over S as (u, v) runs over D.
� the sphere of radius a is parametrized by
�r(φ, ϑ) = (

a cos(ϑ) sin(φ), a sin(ϑ) sin(φ),

a cos(φ)
)
, 0 ≤ φ ≤ π, 0 ≤ ϑ ≤ 2π

� d S = | �Tu × �Tv| du dv gives the element of surface

area.
� area(S) = ∫∫

S d S = ∫∫
D | �Tu × �Tv| du dv.

� for the parametrization of the sphere of radius a
given above | �Tφ × �Tϑ | = a2 sin(φ)

� a parametrization �r(u, v) of a surface S orients a
surface via the normal vector �Tu × �Tv

� a simple closed curve C which bounds an oriented
surface S inherits an orientation from S: an
upstanding person will traverse C so that S is to her
left.

Flux through a Surface

� if F a vector field on a surface S parametrized by
�r(u, v) = (

x(u, v), y(u, v), z(u, v)
)
(u, v) ∈ D, the

flux of F through S is∫∫
S F · d �S = ∫∫

D F
(�r(u, v)

) · ( �Tu × �Tv

)
du dv

Divergence

� if F = P�i + Q �j + R�k is a vector field, then

div(F) = ∇ · F =
(

∂ P
∂x , ∂ Q

∂y , ∂ R
∂z

)
.

� div(F)(x, y, z) = lim
vol→0

the flux of F through S

volume enclosed by S
where

the limit is taken over the family of closed surfaces
which contain (x, y, z).

Vector Identities

�
{

scalar
fields

}
grad→ { vector

fields

} curl→ { vector
fields

} div→
{

scalar
fields

}
� curl(grad( f )) = 0 for any scalar field f
� div(curl(F)) = 0 for any vector field F
� if curl(F) = 0 then F = ∇ f for a scalar field f
provided F is defined on all of R

3 and the first
partials of F are continuous
� if div(F) = 0 then F = curl(G) for some vector
field G provided F is defined on all of R

3 and the first
partials of F are continuous.

Stokes’s Theorem

� ∫∫
S curl(F) · d �S = ∫

∂S F · d�s where F is a vector
field on S with continuous first partials, S is an
oriented surface bounded by a simple closed curve ∂S
oriented by S.

Divergence Theorem

� ∫∫
∂V F · d �S = ∫∫∫

V div(F) dV where F is a vector
field on the simple solid region V with continuous
first partials, and the boundary surface ∂V is oriented
with an outward pointing normal.
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