Summary Notes for

Vector Calculus

Differentiability
o f :U c R" = Ris differentiable at X, if there is a
vector a such that

|f(>*<>—f(>*<o)—a-<i—>*<o)|=
IX =%

If such an & exists it must be

(e (%), 3 (%o)s - - e (Xo)) called D(F)(Xo).

o F:U c R™ — R"is differentiable at X, if there is
a N x mmatrix A such that

F(%) - AR=%)| _
X = %

.....

o

X=X,

If such an A exists it must be

2 (%) aXm< %o))
T (%) o (xo»

called D(F)(X,).
o If all the partials 2

neighbourhood of X, then F is differentiable at X,.
Curves
© parametrization: €(t) = (X(1), y(t), z(t)), for
a<t<b
© tangent vector: C'(t) = (X'(1), y'(t), Z (1))
o speed: v = [C'(1)] = VX' ()2 + Y (1) + Z(t)2
¢ unit tangent: T(t) = C/(t)/|E' (V)]
¢ arc length s = fb [/(t)| dt
¢ arc length parametrization: S(t) gives the length of
the curve from atot: s(t) = f |8’ (u)| du, thus
— [E/(t)], i.e. ds = |E/(t)] dt.

ﬁ are continuous on a

Cylindrical Coordinates

X =T cos(1}) 0<0 < am
Yy =T sin(¢) {O:r -
Z—Z -

r= X2+y2

tan~*(y/X) X>o0
Y= { tan~"(Y/X) +2m X>o0,yYy<o0

tan~ " (Y/X)+7m X <o
dV =rdrdydz

Spherical Coordinates

X = p cos(P) sin(¢), o<¢p=<m
y = psin(P¥) sin(¢), o<1¥ <oam
zZ = pcos(¢), 0<p
P=JVX+Yy +272

tan~*(y/X) X >0
U =4 tan"(Yy/X)+27r X>o0,Yy<o0

tan " (Y/X)+m X <o

_ s ST
¢ = sin m)
dV = p*sin(¢) dp d¢ do

General Change of Coordinates

—1

( ax 3y
X = XU, v du  Ju

) e %
y= Y(U, U) ’ v v

Jp fx, y)ydxdy =
S T Ox(u v, y(u, v)) |
where D' > (U,v) = (X,y) € D
Gradient
o del or nabla: V = (ax’ ay )
ograd(f) =V =(, &, g;>
© V f points in the direction of greatest increase of f.

A(X.y)

D) dudv

o |V f| is the rate of increase in this direction.

© Dy(f) is the rate of change of f in the direction of

the unit vector G: Dy(f) =u-Vf

© V f is perpendicular to the level sets of f: if f (X, y)

is a scalar field on R? then V f is perpendicular to the

level curves of f;if f(X,y, Z) is a scalar field on R?

then V f is perpendicular to the level surfaces of f.
Line Integrals

¢ C is a curve parametrized by

C(t) = (X(t), y(t), z(t)) fora <t < b, F is a vector

field on R3.

o [oF-d8= [PF@Et)-¢

traversed from ¢(a)to ¢(b).

¢ — C is the same curve as C geometrically, but

traversed in the opposite direction.

o [ F-dS=—-J.F.ds

o [o VT dS= f(end) — f(beginning) =

f(C(b)) — f(C(a))

¢ for a scalar field we set:

'(t) dt where the curve is



Jo fx, yyds = [2 fEt) [E' )] dt

Jo fox, yydx = [° £ @) X (@) dt

Jo fx y)dy = 2 f @)y () dt
Conservative Fields

© a vector field F is conservative if the line integral
Jc F - dS = o for any closed loop C, equivalently for
any path C, . F - dS depends only on the endpoints
of C.

© V f is conservative for any scalar field f.

¢ if F is conservative on an open connected region

D,then F = V f where f(X,y) = f(;xb);) F -dSand

the line integral is taken along any path in D joining
(a, b) to (X, y).

o aregion D is simply connected if it has no ‘holes’.
oif F = P(X, y)i + Q(X, y)j and BQ = dP then F is
conservative provided that F is contmuous on an
open simply connected region D and the first partials
of P and Q are continuous on D.

Green’s Theorem

o [c Pdx+ Qdy = ffDW——dAwhereCma

simple closed curve in the plane, D is the interior of
C, and C is traversed with the interior to the left.
Circulation and Curl

-

ocurl(F) =V x F =

OX[e —
rO&’Iw‘—-l
TR =

ay dz’ 9z ax’ 09X
F = (P(x.Y,2), QX Y. 2, RX,Y, 2).
¢ if F is a vector field and C is a closed curve, the
circulation of F around C is [ F - dF.
o if d is a unit vector the component of

curl(F)(X, Y, 2) in the direction of dis
circulation around C

(ﬁ_ﬂ P 9R 9Q dP)for

where the limit is taken

lim
area—o areain C

over the family of curves in the plane perpendicular
to d which shrink to the point (X, y, 2).

Surfaces

© a surface Sis parametrized by

F(u, v) = (X(u, v), y(U, v), Z(U, v)) for (U, v) € D if
F (U, v) runs over Sas (U, v) runs over D.

© the sphere of radius a is parametrized by

F(p,d) = (a cos(¥) sin(¢), asin(¥}) sin(¢),
acos(¢)), o<¢p<m o<v <om

odS=|T, x T,|dudv gives the element of surface

area.
oarea(S) = [[gdS= ffD|Tu x T,| dudv.

o for the parametrization of the sphere of radius a
given above |T¢ x Ty| = a2 sin(¢)

¢ a parametrization [ (U, v) ofg sur&ace Sorients a
surface via the normal vector T, x T,

¢ a simple closed curve C which bounds an oriented
surface Sinherits an orientation from S: an
upstanding person will traverse C so that Sis to her

left.
Flux through a Surface

¢ if F a vector field on a surface S parametrized by
F(u,v) = (x(u, v), y(U, v), Z(U, v)) (U, v) € D, the
flux of F through Sis L
JIsF- dS= [5 F(Fu,v) - (Ty x T,) dudv

Divergence
cif F=Pi+ QT + RK is a vector field, then
div(F) =V - F = (%—5 2 %),

the flux of F through S
where

odiv(F)(X, Y, 2) =

vol—>o volume enclosed by S
the limit is taken over the family of closed surfaces

which contain (X, Y, 2).
Vector Identities

rad url iv
o { i S ey = et = i)
o curl(grad(f)) = o for any scalar field f
¢ div(curl(F)) = o for any vector field F
o if curl(F) = o then F = V f for a scalar field f
provided F is defined on all of R? and the first
partials of F are continuous
¢ if div(F) = o then F = curl(G) for some vector
field G provided F is defined on all of R3 and the first
partials of F are continuous.
Stokes’s Theorem
o [[gcurl(F) - dS= [, F - dS where F is a vector
field on Swith continuous first partials, Sis an
oriented surface bounded by a simple closed curve 3S
oriented by S.
Divergence Theorem
o [y F- dS= [, div(F) dV where F is a vector
field on the simple solid region V with continuous
first partials, and the boundary surface 9V is oriented
with an outward pointing normal.
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