1. By Green's theorem, one way to find the area of a region in \mathbb{R}^{2} is to integrate the vector field $\mathbf{F}=\left(-\frac{y}{2}, \frac{x}{2}\right)$ around the outside of the boundary.
We already know a parameterization of the hypocycloid \mathbf{c} (from Homework 6, \# 2):

$$
\begin{aligned}
x(\theta) & =\cos ^{3}(\theta) & \left(x^{\prime}(\theta), y^{\prime}(\theta)\right) & =\left(-3 \cos ^{2}(\theta) \sin (\theta), 3 \cos (\theta) \sin ^{2}(\theta)\right) \\
y(\theta) & =\sin ^{3}(\theta) & \mathbf{F} & =\left(-\frac{\sin ^{3}(\theta)}{2}, \frac{\cos ^{3}(\theta)}{2}\right)
\end{aligned}
$$

$$
\text { for } 0 \leq \theta \leq 2 \pi
$$

The dot product of \mathbf{F} with the velocity vector of the parameterization is

$$
\begin{aligned}
\mathbf{F} \cdot\left(x^{\prime}, y^{\prime}\right) & =\frac{3}{2}\left(\cos ^{2}(\theta) \sin ^{4}(\theta)+\cos ^{4}(\theta) \sin ^{2}(\theta)\right) \\
& =\frac{3}{2} \cos ^{2}(\theta) \sin ^{2}(\theta) \\
& =\frac{3}{8} \sin ^{2}(2 \theta)
\end{aligned}
$$

So the integral becomes

$$
\int_{\mathbf{c}} \mathbf{F} \cdot d s=\frac{3}{8} \int_{0}^{2 \pi} \sin ^{2}(2 \theta)=\frac{3}{8} \pi
$$

2.

(a) The region V is a cylinder of radius 3 with a smaller cylinder of radius 1 removed:

The boundary surface comes in four natural pieces: the top disk, the bottom disk, the outside cylinder, and the inside cylinder.
(b) Piece one: the top of the cylinder (oriented upwards)

$$
\begin{array}{rlrl}
x(r, \theta) & =r \cos (\theta) & \mathbf{T}_{r} & =(\cos (\theta), \sin (\theta), 0) \\
y(r, \theta)=r \sin (\theta) & \mathbf{T}_{\theta} & =(-r \sin (\theta), r \cos (\theta), 0) \\
z(r, \theta)=2 & \mathbf{N} & =(0,0, r) \\
& & & \\
& & \text { for } 1 \leq r \leq 3,0 \leq \theta \leq 2 \pi .
\end{array}
$$

The normal is oriented upwards as it should be. With this parameterization, we have $\mathbf{F}=\left(2 r \cos (\theta), r^{3} \cos (\theta) \sin ^{2}(\theta), 2 r^{2} \sin (\theta) \cos (\theta)\right)$, and

$$
\mathbf{F} \cdot \mathbf{N}=2 r^{3} \sin (\theta) \cos (\theta)=r^{3} \sin (2 \theta)
$$

If S_{1} is the top of the cylinder, this gives

$$
\iint_{S_{1}} \mathbf{F} \cdot d S=\int_{1}^{3} \int_{0}^{2 \pi} r^{3} \sin (2 \theta) d \theta d r=0
$$

Piece two: the bottom of the cylinder (oriented downwards)

$$
\begin{array}{rlrl}
x(r, \theta)=r \cos (\theta) & \mathbf{T}_{r}=(\cos (\theta), \sin (\theta), 0) \\
y(r, \theta)=r \sin (\theta) & \mathbf{T}_{\theta}=(-r \sin (\theta), r \cos (\theta), 0) \\
z(r, \theta)=0 & \mathbf{N}=(0,0, r) \\
& & \text { for } 1 \leq r \leq 3,0 \leq \theta \leq 2 \pi .
\end{array}
$$

We need to use the downwards oriented normal, or $\mathbf{N}=(0,0,-r)$ (although in this case it doesn't make much difference). We have $\mathbf{F}=\left(2 r \cos (\theta), r^{3} \cos (\theta) \sin ^{2}(\theta), 0\right)$, and so $\mathbf{F} \cdot \mathbf{N}=0$. If S_{2} is the bottom part of the cylinder, this gives

$$
\iint_{S_{2}} \mathbf{F} \cdot d S=0
$$

Piece three: the outside surface, oriented outwards.

$$
\begin{array}{rlrl}
x(v, \theta)=3 \cos (\theta) & \mathbf{T}_{\theta} & =(-3 \sin (\theta), 3 \cos (\theta), 0) \\
y(v, \theta)=3 \sin (\theta) & \mathbf{T}_{v} & =(0,0,1) \\
z(v, \theta)=v & \mathbf{N} & =(3 \cos (\theta), 3 \sin (\theta), 0) \\
& & & \\
& & \text { for } 0 \leq v \leq 2,0 \leq \theta \leq 2 \pi .
\end{array}
$$

The normal vector is pointing outwards, as it should be. We have

$$
\mathbf{F}=\left(6 \cos (\theta), 27 \cos (\theta) \sin ^{2}(\theta), 9 v \cos (\theta) \sin (\theta)\right)
$$

with $\mathbf{F} \cdot \mathbf{N}=18 \cos (\theta)+81 \cos (\theta) \sin ^{3}(\theta)$.
If S_{3} is the outside surface, this gives

$$
\iint_{S_{3}} \mathbf{F} \cdot d S=\int_{0}^{2} \int_{0}^{2 \pi} 18 \cos ^{2}(\theta)+81 \cos (\theta) \sin ^{3}(\theta) d \theta d v=36 \pi
$$

Piece four: the inside surface, oriented inwards.

$$
\begin{aligned}
x(v, \theta)= & \cos (\theta) \\
y(v, \theta)= & \mathbf{T}_{\theta}=(-\sin (\theta), \cos (\theta), 0) \\
z(v, \theta)= & v \\
& \\
& \text { for } 0 \leq v \leq 2,0 \leq \theta \leq 2 \pi
\end{aligned}
$$

Here the normal is pointing outwards, and we need to use $\mathbf{N}=(-\cos (\theta),-\sin (\theta), 0)$ instead. We have

$$
\mathbf{F}=\left(2 \cos (\theta), \cos (\theta) \sin ^{2}(\theta), v \cos (\theta) \sin (\theta)\right),
$$

with $\mathbf{F} \cdot \mathbf{N}=-2 \cos ^{2}(\theta)-\cos (\theta) \sin ^{3}(\theta)$.
If S_{4} is the inside surface, this gives

$$
\iint_{S_{4}} \mathbf{F} \cdot d S=\int_{0}^{2} \int_{0}^{2 \pi}-2 \cos ^{2}(\theta)-\cos (\theta) \sin ^{3}(\theta) d \theta d v=-4 \pi
$$

Therefore, if S is the oriented boundary surface made up of S_{1}, S_{2}, S_{3}, and S_{4} together, we have

$$
\iint_{S}=0+0+36 \pi-4 \pi=32 \pi
$$

(c) $\operatorname{Div}(\mathbf{F})=2+3 x y$. If V is the cylinder (with the smaller cylinder removed) then the integral of $x y$ over V is zero by symmetry, and so the integral of $\operatorname{Div}(\mathbf{F})$ over V is the same as the integral of 2 over V, i.e., twice the volume of V, so

$$
\iiint_{V} \operatorname{Div}(\mathbf{F}) d V=2(\text { volume of } V)=2(2)\left(3^{2}-1\right) \pi=32 \pi
$$

3. We're starting with $\mathbf{F}(x, y, z)=\left(y, z, x^{2}\right)$ on \mathbb{R}^{3}.
(a) We can use the usual parameterization of the unit sphere:

$$
\begin{array}{ll}
x(\phi, \theta)=\sin (\phi) \cos (\theta) & \mathbf{T}_{\phi}=(\cos (\phi) \cos (\theta), \cos (\phi) \sin (\theta),-\sin (\phi)) \\
y(\phi, \theta)=\sin (\phi) \sin (\theta) & \mathbf{T}_{\theta}=(-\sin (\phi) \sin (\theta), \sin (\phi) \cos (\theta), 0) \\
z(\phi, \theta)=\cos (\phi) & \mathbf{N}=\left(\sin ^{2}(\phi) \cos (\theta), \sin ^{2}(\phi) \sin (\theta), \sin (\phi) \cos (\phi)\right)
\end{array}
$$

$$
\text { for } 0 \leq \phi \leq \pi / 2,0 \leq \theta \leq 2 \pi
$$

The normal vector is oriented outwards. In this parameterization the vector field becomes $\mathbf{F}=\left(\sin (\phi) \sin (\theta), \cos (\phi), \sin ^{2}(\phi) \cos ^{2}(\theta)\right)$, and the dot product of the vector field and normal vector is

$$
\mathbf{F} \cdot \mathbf{N}=\sin ^{3}(\phi) \sin (\theta) \cos (\theta)+\sin ^{2}(\phi) \cos (\phi) \sin (\theta)+\sin ^{3}(\phi) \cos (\phi) \sin ^{2}(\theta)
$$

Note that only the last term : $\sin ^{3}(\phi) \cos (\phi) \sin ^{2}(\theta)$ will contribute anything to the integral, since (by integrating by θ) first, the other terms give zero.

The integral becomes

$$
\iint_{S_{1}} \mathbf{F} \cdot d S=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \sin ^{3}(\phi) \cos (\phi) \sin ^{2}(\theta) d \phi d \theta=\frac{\pi}{4}
$$

(b) Parameterizing S_{2} :

$$
\begin{array}{rlrl}
x(r, \theta)= & r \cos (\theta) & \mathbf{T}_{r} & =(\cos (\theta), \sin (\theta), 0) \\
y(r, \theta)=r \sin (\theta) & \mathbf{T}_{\theta} & =(-r \sin (\theta), r \cos (\theta), 0) \\
z(r, \theta)=0 & \mathbf{N} & =(0,0, r) \\
& & & \\
& & \text { for } 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi .
\end{array}
$$

The normal is pointing upwards. In this parameterization the vector field becomes $\mathbf{F}=\left(r \sin (\theta), 0, r^{2} \cos ^{2}(\theta)\right)$, and the dot product with the normal is

$$
\mathbf{F} \cdot \mathbf{N}=r^{3} \cos ^{2}(\theta)
$$

Therefore we have

$$
\iint_{S_{2}} \mathbf{F} \cdot d S=\int_{0}^{1} \int_{0}^{2 \pi} r^{3} \cos ^{2}(\theta) d \theta d r=\frac{\pi}{4}
$$

(c) The vector field $\mathbf{G}=\left(\frac{z^{2}}{2}, \frac{x^{3}}{3}, \frac{y^{2}}{2}\right)$ is one of many with $\operatorname{Curl}(\mathbf{G})=\mathbf{F}$.
(d) Parameterizing the unit circle \mathbf{c} :

$$
\begin{array}{rlrl}
x(\theta) & =\cos (\theta) & \left(x^{\prime}(\theta), y^{\prime}(\theta), z^{\prime}(\theta)\right) & =(-\sin (\theta), \cos (\theta), 0) \\
y(\theta) & =\sin (\theta) & \mathbf{G} & =\left(0, \frac{\cos ^{3}(\theta)}{3}, \frac{\sin ^{2}(\theta)}{2}\right) \\
z(\theta) & =0 &
\end{array}
$$

$$
\text { for } 0 \leq \theta \leq 2 \pi
$$

The dot product of \mathbf{G} with the velocity vector is $\mathbf{G} \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\frac{\cos ^{4}(\theta)}{3}$, giving

$$
\begin{aligned}
\int_{\mathbf{c}} \mathbf{G} \cdot d s & =\frac{1}{3} \int_{0}^{2 \pi} \cos ^{4}(\theta) d \theta \\
& =\left(\frac{1}{12} \cos ^{3}(\theta) \sin (\theta)+\frac{1}{8} \cos (\theta) \sin (\theta)+\frac{1}{8} \theta\right)_{\theta=0}^{\theta=2 \pi} \\
& =\frac{\pi}{4}
\end{aligned}
$$

(e) Explanation one:

If \mathbf{F} is defined on all of \mathbb{R}^{3}, and $\operatorname{Div}(\mathbf{F})=0$ then there is some vector field \mathbf{G} with $\operatorname{Curl}(\mathbf{G})=\mathbf{F}$. So if S_{1} and S_{2} are two oriented surfaces with the same oriented boundary curve \mathbf{c}, then

$$
\iint_{S_{1}} \mathbf{F} \cdot d S=\int_{\mathbf{c}} \mathbf{G} \cdot d s=\iint_{S_{2}} \mathbf{F} \cdot d S
$$

where the two equalities are obtained by applying Stokes' theorem, and using $\operatorname{Curl}(\mathbf{G})=\mathbf{F}$.

Explanation two:
Let V be the volume enclosed by S_{1} and S_{2}. The oriented boundary of V is S_{1} and S_{2} with opposite orientations. But then by the divergence theorem:

$$
\iint_{S_{1}} \mathbf{F} \cdot d S-\iint_{S_{2}} \mathbf{F} \cdot d S=\iiint_{V} \operatorname{Div}(\mathbf{F}) d V=0
$$

so again the two flux integrals are equal.
4. We're starting with the vector field $\mathbf{F}(x, y, z)=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}, 0\right)$, which is defined on \mathbb{R}^{3} minus the z-axis.
(a) For \mathbf{c}_{1} the unit circle in the $x y$-plane (we can use the parameterization from $3(\mathrm{~d})$):

$$
\begin{array}{rlrl}
x(\theta) & =\cos (\theta) & \left(x^{\prime}(\theta), y^{\prime}(\theta), z^{\prime}(\theta)\right) & =(-\sin (\theta), \cos (\theta), 0) \\
y(\theta) & =\sin (\theta) & \mathbf{F} & =(-\sin (\theta), \cos (\theta), 0) \\
z(\theta) & =0 &
\end{array}
$$

$$
\text { for } 0 \leq \theta \leq 2 \pi \text {. }
$$

The dot product of vector field and velocity vector is $\mathbf{F} \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\sin ^{2}(\theta)+$ $\cos ^{2}(\theta)=1$, giving

$$
\int_{\mathbf{c}_{1}} \mathbf{F} \cdot d s=\int_{0}^{2 \pi} 1 d \theta=2 \pi
$$

(b) The calculation for the unit circle \mathbf{c}_{2} lifted to $z=3$ is almost identical:

$$
\begin{array}{rlrl}
x(\theta) & =\cos (\theta) & \left(x^{\prime}(\theta), y^{\prime}(\theta), z^{\prime}(\theta)\right) & =(-\sin (\theta), \cos (\theta), 0) \\
y(\theta) & =\sin (\theta) & \mathbf{F} & =(-\sin (\theta), \cos (\theta), 0) \\
z(\theta) & =3
\end{array}
$$

$$
\text { for } 0 \leq \theta \leq 2 \pi
$$

The dot product of vector field and velocity vector is again $\mathbf{F} \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=1$, and so

$$
\int_{\mathbf{c}_{2}} \mathbf{F} \cdot d s=\int_{0}^{2 \pi} 1 d \theta=2 \pi
$$

(c) Shifting the unit circle in the x-direction by 3 gives us

$$
\begin{array}{rlrl}
x(\theta) & =\cos (\theta)+3 & \left(x^{\prime}(\theta), y^{\prime}(\theta), z^{\prime}(\theta)\right) & =(-\sin (\theta), \cos (\theta), 0) \\
y(\theta) & =\sin (\theta) & \mathbf{F} & =\left(-\frac{\sin (\theta)}{10+6 \cos (\theta)}, \frac{\cos (\theta)+3}{10+6 \cos (\theta)}, 0\right) \\
z(\theta) & =0
\end{array}
$$

$$
\text { for } 0 \leq \theta \leq 2 \pi
$$

The dot product of vector field and velocity vector is

$$
\mathbf{F} \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\frac{1+3 \cos (\theta)}{10+6 \cos (\theta)}
$$

The anti-derivative of $\frac{1+3 \cos (\theta)}{10+6 \cos (\theta)}$ is a bit hard to find (sorry - I didn't mean for it to be so difficult): an anti-derivative is $\arctan (\tan (\theta / 2))-\arctan (\tan (\theta / 2) / 2)$.

The fact that the anti-derivative is periodic gives

$$
\begin{aligned}
\int_{\mathbf{c}_{3}} \mathbf{F} \cdot d s & =\int_{0}^{2 \pi} \frac{1+3 \cos (\theta)}{10+6 \cos (\theta)} d \theta \\
& =(\arctan (\tan (\theta / 2))-\arctan (\tan (\theta / 2) / 2))_{\theta=0}^{\theta=2 \pi}=0
\end{aligned}
$$

(d)

$$
\operatorname{Curl}(\mathbf{F})=\left(0,0, \frac{2}{x^{2}+y^{2}}-\frac{2\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}\right)=(0,0,0)
$$

To show that $\int_{\mathbf{c}_{3}} \mathbf{F} \cdot d s=0$, let S_{3} be the disk with \mathbf{c}_{3} as a boundary oriented upwards, then Stokes' theorem gives

$$
\int_{\mathbf{c}_{3}} \mathbf{F} \cdot d s=\iint_{S_{3}} \operatorname{Curl}(\mathbf{F}) \cdot d S=0 .
$$

To show that the answers in (a) and (b) should be the same, let S_{12} be the cylinder $x^{2}+y^{2}=1,0 \leq z \leq 3$, oriented outwards. This circle has \mathbf{c}_{1} and \mathbf{c}_{2} as boundary curves, but to get the orientation compatible with the orientation on S_{12}, we have to travel around \mathbf{c}_{2} backwards. So, in this case Stokes' theorem gives

$$
\int_{\mathbf{c}_{1}} \mathbf{F} \cdot d s-\int_{\mathbf{c}_{2}} \mathbf{F} \cdot d s=\iint_{S_{12}} \operatorname{Curl}(\mathbf{F}) \cdot d S=0
$$

and so $\int_{\mathbf{c}_{1}} \mathbf{F} \cdot d s=\int_{\mathbf{c}_{2}} \mathbf{F} \cdot d s$.
(e) Any surface S with boundary \mathbf{c}_{1} or \mathbf{c}_{2} would have to cross the z-axis. Since \mathbf{F} isn't defined on the z-axis, we can't apply Stokes' theorem to integrate over S.

5. The vector field

$$
\mathbf{F}(x, y, z)=\left(\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right)
$$

is defined everywhere but the origin.
(a) If S is any closed surface not containing the origin, and V the region that it surrounds, then we can apply the divergence theorem to compute $\iint_{S} \mathbf{F} \cdot d S$:

$$
\iint_{S} \mathbf{F} \cdot d S=\iiint_{V} \operatorname{Div}(\mathbf{F}) d V=0
$$

since $\operatorname{Div}(\mathbf{F})=0$.
(b) Now suppose that S is any closed surface that surrounds the origin. We can't apply the divergence theorem to the region inside S since \mathbf{F} is not defined at the origin.

But, if we let S_{ϵ} be a small sphere of radius ϵ around the origin (small enough to be contained inside of S), and V the region between S_{ϵ} and S, then we can apply the divergence theorem to V.

If we orient S outwards, and also orient S_{ϵ} outwards, then the orientation on S is right for the divergence theorem, but S_{ϵ} should be reversed. Switching the sign, the divergence theorem then gives us:

$$
\iint_{S} \mathbf{F} \cdot d S-\iint_{S_{\epsilon}} \mathbf{F} \cdot d S=\iiint_{V} \operatorname{Div}(\mathbf{F}) d V=0
$$

or $\iint_{S} \mathbf{F} \cdot d S=\iint_{S_{\epsilon}} \mathbf{F} \cdot d S$.
This shows that the value of $\iint_{S} \mathbf{F} \cdot d S$ doesn't depend on the surface S which surrounds the origin, since it's equal to the integral over any sufficiently small sphere surrounding the origin, and since we can always find a common such sphere for any two surfaces S and S^{\prime} surrounding the origin.

The actual value of this flux integral over any sphere around the origin was computed in Homework 10 question 5 to be

$$
\iint_{S_{\epsilon}} \mathbf{F} \cdot d S=4 \pi
$$

