1. For $\mathbf{F}(x, y)=\left(\ln (x+5)+y^{2}, 2 x y-y^{2}\right)$ we have $\operatorname{Curl}(\mathbf{F})=2 y-2 y=0$. If \mathbf{c} is the top half of the unit circle oriented from $(-1,0)$ to $(1,0)$, it has the same endpoints as the line segment \mathbf{c}^{\prime} joining $(-1,0)$ to $(1,0)$ directly.
By the flexibility theorem for curves, this means that $\int_{\mathbf{c}} \mathbf{F} \cdot d s=\int_{\mathbf{c}^{\prime}} \mathbf{F} \cdot d s$.
Computing the second integral is easy:

$$
\begin{array}{rlrl}
x(t)=t & \left(x^{\prime}(\theta), y^{\prime}(\theta)\right) & =(1,0) \\
y(t)=0 & \mathbf{F} & =(\ln (t+5), 0) \\
& & \text { for }-1 \leq t \leq 1
\end{array}
$$

The dot product of \mathbf{F} and the velocity vector is $\mathbf{F} \cdot\left(x^{\prime}, y^{\prime}\right)=\ln (t+5)$ so the integral is

$$
\int_{\mathbf{c}^{\prime}} \mathbf{F} \cdot d s=\int_{-1}^{1} \ln (t+5) d t=((t+5) \ln (t+5)-t)_{t=-1}^{t=1}=6 \ln (6)-4 \ln (4)-2 .
$$

2. For $\mathbf{F}(x, y, z)=\left(y e^{z^{2}}-x e^{x y}, y e^{x y}+\tan \left(z^{2}+z+1\right), x^{2}\right)$, we have

$$
\operatorname{Div}(\mathbf{F})=-e^{x y}-x y e^{x y}+e^{x y}+x y e^{x y}=0 .
$$

If S is the top half of the unit sphere (oriented upwards) and S^{\prime} the unit disk (also oriented upwards) the flexibility theorem for surfaces tells us that $\iint_{S} \mathbf{F} \cdot d S=\iint_{S^{\prime}} \mathbf{F} \cdot d S$. Let's do the second integral, since it seems easier:

$$
\begin{array}{rlrl}
x(r, \theta) & =r \cos (\theta) & \mathbf{T}_{r}=(\cos (\theta), \sin (\theta), 0) \\
y(r, \theta) & =r \sin (\theta) & \mathbf{T}_{\theta}=(-r \sin (\theta), r \cos (\theta), 0) \\
z(r, \theta) & =0 & \mathbf{N}=(0,0, r)
\end{array}
$$

$$
\text { for } 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi
$$

The dot product of the vector field with the normal vector is $\mathbf{F} \cdot \mathbf{N}=r^{3} \cos ^{2}(\theta)$, so the flux integral is

$$
\iint_{S^{\prime}} \mathbf{F} \cdot d S=\int_{0}^{1} \int_{0}^{2 \pi} r^{3} \cos ^{2}(\theta) d \theta d r=\frac{\pi}{4}
$$

3. If we start with $\mathbf{F}(x, y)=\left(x^{2}-y, x y-\arcsin (y)+e^{y^{3}}\right)$ then $\operatorname{Curl}(\mathbf{F})=y+1$.

If \mathbf{c}_{1} is the top half of the unit circle, oriented from $(-1,0)$ to $(1,0)$, and \mathbf{c}_{2} is the line segment joining $(-1,0)$ to $(1,0)$ and R the region between \mathbf{c}_{1} and \mathbf{c}_{2} then Green's theorem tells us that

$$
-\int_{\mathbf{c}_{1}} \mathbf{F} \cdot d s+\int_{\mathbf{c}_{2}} \mathbf{F} \cdot d s=\iint_{R} \operatorname{Curl}_{2}(\mathbf{F}) d A
$$

Let's use this to compute $\int_{\mathbf{c}_{1}} \mathbf{F} \cdot d s$ by computing the other two parts of the equality. We already parametrized the line segment \mathbf{c}_{2} in question 1 :

$$
\begin{array}{cc}
x(t)=t & \left(x^{\prime}(\theta), y^{\prime}(\theta)\right) \\
y(t)=0 & (1,0) \\
& \mathbf{F}=\left(t^{2}, 1\right) \\
& \text { for }-1 \leq t \leq 1 .
\end{array}
$$

The dot product of the vector field and the velocity vector is $\mathbf{F} \cdot\left(x^{\prime}, y^{\prime}\right)=t^{2}$, and so

$$
\int_{\mathbf{c}_{2}} \mathbf{F} \cdot d s=\int_{-1}^{1} t^{2} d t=\frac{2}{3}
$$

In polar coordinates, the integral of $\operatorname{Curl}(\mathbf{F})$ over R is

$$
\iint_{R} \operatorname{Curl}(\mathbf{F}) d A=\int_{0}^{1} \int_{0}^{\pi} r^{2} \sin (\theta)+r d \theta d r=\frac{2}{3}+\frac{\pi}{2}
$$

Using these values in the equation above, we get

$$
-\int_{\mathbf{c}_{1}} \mathbf{F} \cdot d s+\left(\frac{2}{3}\right)=\frac{2}{3}+\frac{\pi}{2}
$$

Or $\int_{\mathbf{c}_{1}} \mathbf{F} \cdot d s=-\frac{\pi}{2}$.
4. $\mathbf{E}(x, y, z)=\left(x^{2}-y^{2}, e^{y}-2 z, z^{2}+3 \sin (y)\right)$ cannot be an electric field (in a static situation $)$, since $\operatorname{Curl}(\mathbf{E})=(3 \cos (y)+2,0,2 y) \neq(0,0,0)$.
Similarly, $\mathbf{B}(x, y, z)=\left(\sin (x), \sin (y), z^{2}\right)$ cannot be a magnetic field (in a static or nonstatic) situation, since $\operatorname{Div}(\mathbf{B})=\cos (x)+\cos (y)+2 z \neq 0$.

