1. We have $\mathbf{F}(x, y)=\left(e^{x^{2}}, y \sin (\pi x), x y\right)$, and $\mathbf{G}(u, v, w)=\left(\cos (u v), w-u^{2}\right)$.
(a) The point q is the point $\mathbf{F}(1,1)=(e, 0,1)$ in \mathbb{R}^{3}.
(b) The composite function is $(\mathbf{G} \circ \mathbf{F})(x, y)=\left(\cos \left(e^{x^{2}} y \sin (\pi x)\right), x y-e^{2 x^{2}}\right)$. with derivative matrix
$\mathbf{D}(\mathbf{G} \circ \mathbf{F})=\left[\begin{array}{cc}-\sin \left(e^{x^{2}} y \sin (\pi x)\right) y e^{x^{2}}(2 x \sin (\pi x)+\pi \cos (\pi x)) & -\sin \left(e^{x^{2}} y \sin (\pi x)\right) e^{x^{2}} \sin (\pi x) \\ y-4 x e^{2 x^{2}} & x\end{array}\right]$
At the point $(1,1)$ this has value $\mathbf{D}(\mathbf{G} \circ \mathbf{F})(1,1)=\left[\begin{array}{cc}0 & 0 \\ 1-4 e^{2} & 1\end{array}\right]$.
(c) We have $\mathbf{D F}=\left[\begin{array}{cc}2 x e^{x^{2}} & 0 \\ \pi y \cos (\pi x) & \sin (\pi x) \\ y & x\end{array}\right]$, which at the point $(1,1)$ has value

$$
\mathbf{D F}(1,1)=\left[\begin{array}{rr}
2 e & 0 \\
-\pi & 0 \\
1 & 1
\end{array}\right]
$$

Similarly, $\mathbf{D G}=\left[\begin{array}{ccc}-v \sin (u v) & -u \sin (u v) & 0 \\ -2 u & 0 & 1\end{array}\right]$, which at the point q is

$$
\mathbf{D G}(q)=\left[\begin{array}{rrr}
0 & 0 & 0 \\
-2 e & 0 & 1
\end{array}\right] .
$$

(d) Multiplying, we get

$$
\mathbf{D G}(q) \mathbf{D F}(1,1)=\left[\begin{array}{rrr}
0 & 0 & 0 \\
-2 e & 0 & 1
\end{array}\right]\left[\begin{array}{rr}
2 e & 0 \\
-\pi & 0 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
1-4 e^{2} & 1
\end{array}\right]
$$

as the chain rule guarantees.
2. The way to deal with change of variables is to treat the process as a composition. We have a function $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$, written in terms of (x, y, z) coordinates. We also have
a function \mathbf{G} which translates from (ρ, α, θ) coordinates to (x, y, z) coordinates. This function is given by

$$
\mathbf{G}(\rho, \alpha, \theta)=(\rho \sin (\alpha) \cos (\theta), \rho \sin (\alpha) \sin (\theta), \rho \cos (\alpha)) .
$$

The function \mathbf{G} is a function from \mathbb{R}^{3} to \mathbb{R}^{3}, thinking of the first \mathbb{R}^{3} as (ρ, α, θ) coordinates, and the second \mathbb{R}^{3} as the (x, y, z) coordinates. When we want to understand f in terms of the (ρ, α, θ) coordinates, we're really talking about the composite function $f \circ \mathbf{G}$:

At the point q we're interested in, we know that $\mathbf{D} f(q)=\left[\begin{array}{lll}\sqrt{3} & \sqrt{12} & -1\end{array}\right]$.
(a) The derivative matrix for \mathbf{G} is

$$
\mathbf{D G}=\left[\begin{array}{ccc}
\sin (\alpha) \cos (\theta) & \rho \cos (\alpha) \cos (\theta) & -\rho \sin (\alpha) \sin (\theta) \\
\sin (\alpha) \sin (\theta) & \rho \cos (\alpha) \sin (\theta) & \rho \sin (\alpha) \cos (\theta) \\
\cos (\alpha) & -\rho \sin (\alpha) & 0
\end{array}\right]
$$

which at the point $(2, \pi / 4, \pi / 3)$ gives

$$
\mathbf{D G}(2, \pi / 4, \pi / 3)=\left[\begin{array}{rrr}
\frac{1}{2 \sqrt{2}} & \frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{\sqrt{2}} \\
\frac{\sqrt{3}}{2 \sqrt{2}} & \frac{\sqrt{3}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\sqrt{2} & 0
\end{array}\right] .
$$

By the chain rule, $\mathbf{D}(f \circ \mathbf{G})(2, \pi / 4, \pi / 3)=\mathbf{D} f(q) \mathbf{D G}(2, \pi / 3, \pi / 4)$, or

$$
\begin{aligned}
\mathbf{D}(\mathbf{G} \circ f)(2, \pi / 4, \pi / 3)= & {\left[\begin{array}{lll}
\sqrt{3} & \sqrt{12} & -1
\end{array}\right]\left[\begin{array}{rrr}
\frac{1}{2 \sqrt{2}} & \frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{\sqrt{2}} \\
\frac{\sqrt{3}}{2 \sqrt{2}} & \frac{\sqrt{3}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\sqrt{2} & 0
\end{array}\right] } \\
& =\left[\begin{array}{lll}
\frac{\sqrt{6}}{4}+\sqrt{2}, & \frac{\sqrt{6}}{2}+4 \sqrt{2}, & -\frac{3}{\sqrt{2}}+\sqrt{6}
\end{array}\right]
\end{aligned}
$$

from which we can read off that (in this bad notation):

$$
\begin{aligned}
& \frac{\partial f}{\partial \rho}(q)=\frac{\sqrt{6}}{4}+\sqrt{2} \\
& \frac{\partial f}{\partial \alpha}(q)=\frac{\sqrt{6}}{2}+4 \sqrt{2}, \text { and } \\
& \frac{\partial f}{\partial \theta}(q)=-\frac{3}{\sqrt{2}}+\sqrt{6}
\end{aligned}
$$

(b) We want to move from $(2, \pi / 3, \pi / 4)$ in direction $\vec{v}=\left(v_{\rho}, v_{\alpha}, v_{\theta}\right)$ so that the instantaneous rate of change of f is zero. We also want v_{ρ} to be zero.

This means (using the expression for the derivative in the direction \vec{v}) that we want

$$
\left(\frac{\sqrt{6}}{4}+\sqrt{2}\right) 0+\left(\frac{\sqrt{6}}{2}+4 \sqrt{2}\right) v_{\alpha}+\left(-\frac{3}{\sqrt{2}}+\sqrt{6}\right) v_{\theta}=0
$$

The end result (after multiplying by $\sqrt{6}$ to make the equation slightly cleaner) is that we want to take $\left(0, v_{\alpha}, v_{\theta}\right)$ to be any multiple of the vector

$$
(0,3 \sqrt{3}-6,3+8 \sqrt{3})
$$

(The numbers in this question weren't intended to be so awkward - I made a mistake in setting up the problem.)
3.
(a) $u_{t}=b e^{a x+b t}$ and $u_{x x}=a^{2} e^{a x+b t}$, so it's certainly true that $u_{t}=\left(b / a^{2}\right) u_{x x}$.
(b)

$$
\begin{aligned}
u_{t} & =-\frac{1}{2} t^{-3 / 2} e^{-x^{2} / t}+x^{2} t^{-5 / 2} e^{-x^{2} / t}, \text { and } \\
u_{x} & =-2 x t^{-3 / 2} e^{-x^{2} / t}, \text { giving } \\
u_{x x} & =-2 t^{-3 / 2} e^{-x^{2} / t}+4 x^{2} t^{-5 / 2} e^{-x^{2} / t}
\end{aligned}
$$

and it's again clear that $u_{t}=\frac{1}{4} u_{x x}$.
(c) If f is a C^{2} function, then $f_{x y}=f_{y x}$. If $f_{x}=e^{x}+x y$ then this gives $f_{x y}=\frac{d}{d y} f_{x}=x$. On the other hand, if $f_{y}=e^{x}+x y$, then $f_{y x}=\frac{d}{d x} f_{y}=e^{x}+y$. Since these aren't equal, there is no C^{2} function with those x and y derivatives.
4. The equation $x^{2}+y^{2}=1$ in \mathbb{R}^{3} describes a cylinder of radius 1 , with central axis the z-axis. Slicing with the plane $x+z=1$ gives an ellipse contained in that plane.
In order to find a parameterization, we could first just parameterize the x and y values in the usual way:

$$
\begin{aligned}
x(t) & =\cos (t) \\
y(t) & =\sin (t)
\end{aligned}
$$

and then work out what the z coordinate should be. From the equation $x+z=1$, or $z=1-x$ we see that

$$
z(t)=1-\cos (t)
$$

gives us a parameterization. (For, say $t \in[0,2 \pi]$).
5.
(a) Since $1 /\left(x^{2}+y^{2}\right)$ can be written solely in terms of $\sqrt{x^{2}+y^{2}}$, the graph is rotationally symmetric. Restricting to the slice $y=0$, we see that this is the graph of $z=1 / x^{2}$, rotated around the z axis.

(b) The parameterized curve satisfies $(x(t))^{2}+(y(t))^{2}=e^{2 t}\left(\cos ^{2}(t)+\sin ^{2}(t)\right)=e^{2 t}$, so $1 /\left((x(t))^{2}+(y(t))^{2}\right)=e^{-2 t}=z(t)$, showing that the curve lies on the graph.
(c) Viewed from above the curve is a spiral with an exponentially increasing radius. From part (b) it lies on the graph. A piece of the curve is sketched on the graph above. (Note: some license was taken with this sketch. The radius increases so quickly that it's difficult to get an accurate sketch showing the features of the curve. In the picture above I increased the rate at which the curve rotates around the origin to be able to show how the curve spirals around on a reasonable piece of the graph.)

