1. The operator Curl takes a vector field in \mathbb{R}^{3} as input, and produces a vector field as output; Div takes a vector field as input and produces a function as output; grad takes a function as input and produces a vector field as output.
If f is a function, and \mathbf{F} and \mathbf{G} vector fields, then in terms of mathematical "grammar", the following expressions are
(a) $\operatorname{grad}(\operatorname{grad}(f))$: meaningless $-\operatorname{grad}(f)$ is a vector field, and so we can't take its gradient.
(b) $\operatorname{Curl}(\operatorname{grad}(f))-\mathbf{F}$: a vector field. More precisely, it's the vector field $-\mathbf{F}$ if f is a C^{2} function, since $\operatorname{Curl}(\operatorname{grad}(f))=0$.
(c) $\operatorname{Curl}(\operatorname{Curl}(\mathbf{F}))-\mathbf{G}$: a vector field. Since $\operatorname{Curl}(\mathbf{F})$ is a vector field, we can take its curl, and get another vector field, from which we can subtract \mathbf{G}.
(d) $\operatorname{Curl}(\mathbf{F}) \cdot G$: a function. Since $\operatorname{Curl}(\mathbf{F})$ is a vector field, its dot product with the vector field \mathbf{F} is a function.
(e) $\operatorname{Div}(\operatorname{Div}(\mathbf{F}))$: meaningless. $\operatorname{Div}(\mathbf{F})$ is a function, and so we can't take its divergence.
(f) $\operatorname{Div}(\operatorname{Curl}(\operatorname{grad}(f)))$: A function, although not a very exciting one. If f is a C^{2} function, then $\operatorname{Curl}(\operatorname{grad}(f))=0$. On the other hand for any C^{2} vector field \mathbf{F}, $\operatorname{Div}(\operatorname{Curl}(\mathbf{F}))=0$. In the diagram where "any two operators in a row are zero", this is the combination of all three of them in order. As long as f is a nice function, this is as zero as zero can be.
2.

(a) $\mathbf{F}(x, y, z)=(x, y, z), \operatorname{Curl}(\mathbf{F})=(0,0,0), \operatorname{Div}(\mathbf{F})=3$,
(b) $\mathbf{F}(x, y, z)=(y z, x z, x y), \operatorname{Curl}(\mathbf{F})=(0,0,0), \operatorname{Div}(\mathbf{F})=0$.
(c) $\mathbf{F}(x, y, z)=\left(3 x^{2} y, x^{3}+y^{3}, z^{4}\right), \operatorname{Curl}(\mathbf{F})=(0,0,0), \operatorname{Div}(\mathbf{F})=6 x y+3 y^{2}+4 z^{3}$.
(d) $\mathbf{F}(x, y, z)=\left(e^{x} \cos (y)+z^{2}, e^{x} \sin (y)+x z, x y\right), \operatorname{Curl}(\mathbf{F})=\left(0,2 z-y, z+2 e^{x} \sin (y)\right)$, $\operatorname{Div}(\mathbf{F})=2 e^{x} \cos (x)$.
(a) For $\mathbf{G}=\left(x y^{2}, y z^{2}, z x^{2}\right)$, if there were a vector field \mathbf{F} with $\mathbf{G}=\operatorname{Curl}(\mathbf{F})$, then we would have $\operatorname{Div}(\mathbf{G})=0$. Since $\operatorname{Div}(\mathbf{G})=y^{2}+z^{2}+x^{2} \neq 0$ (as functions) there is no such vector field \mathbf{F}, i.e., \mathbf{G} is not the curl of any vector field \mathbf{F}.
(b) For $\mathbf{G}=(2,1,3)$, we do have $\operatorname{Div}(\mathbf{G})=0$, and so there is some vector field \mathbf{F} with $\operatorname{Curl}(\mathbf{F})=\mathbf{G}$. Since all the entries of \mathbf{G} are constant, and since computing Curl involves taking first derivatives, this suggests looking for a vector field \mathbf{F} whose entries are linear functions of x, y, and z.

For a vector field \mathbf{F} of the form $\mathbf{F}(x, y, z)=(a y+b z, c x+d z, e x+f y)$, we have $\operatorname{Curl}(\mathbf{F})=(f-d, b-e, c-a)$. Picking any a, b, c, d, e, f with $f-d=2, b-e=1$, and $c-a=3$ will give an \mathbf{F} with $\operatorname{Curl}(\mathbf{F})=\mathbf{G}$, for instance,

$$
\mathbf{F}(x, y, z)=(z, 3 x, 2 y)
$$

will work.
4.
(a) For a vector field of the form $\mathbf{F}(x, y, z)=(f(x), g(y), h(z))$, all the partial derivatives involved in computing the curl are zero, hence the curl is zero.
(b) For a vector field of the form $\mathbf{F}(x, y, z)=(f(y, z), g(x, z), h(x, y))$, all the partial derivatives involved in computing the divergence are zero, hence the divergence is zero.
(c) If $\mathbf{F}(x, y, z)=(3 x-y+a z, b x-z, 4 x+c y)$, then

$$
\operatorname{Curl}(\mathbf{F})=[c+1, a-4, b+1],
$$

(for instance, we could just reuse the formula from the solution of $3(\mathrm{~b})$, or compute directly). In order for this to be zero, we need $a=4, b=-1$, and $c=-1$.

A function f with $\operatorname{grad}(f)=(3 x-y+4 z,-x-z, 4 x-y)$ is

$$
f(x, y, z)=\frac{3}{2} x^{2}-x y+4 x z-y z
$$

(d) If \mathbf{F} is a vector field defined on all of \mathbb{R}^{3} with $\operatorname{Curl}(\mathbf{F})=0$, then we know that there is a function f with $\operatorname{grad}(f)=\mathbf{F}$. By hypothesis, $\operatorname{Div}(\mathbf{F})=0$ too, so $\operatorname{Div}(\operatorname{grad}(f))=0$ since $\operatorname{grad}(f)=\mathbf{F}$. But $\operatorname{Div}(\operatorname{grad}(f))=\Delta f$ by definition. Therefore $\Delta f=0$, and so \mathbf{F} is the gradient of a harmonic function.
5. It seems easiest to use the clue in question 4 parts (a) and (b) to try and decompose these vector fields, i.e., to write each \mathbf{F} as a sum of two vector fields, one of the general form in $4(\mathrm{a})$ and one of the general form in $4(\mathrm{~b})$.
(a) If $\mathbf{F}(x, y, z)=\left(x^{2}+e^{y z}, x^{2} z^{2}, \sin (z)\right)$, we can write this as $\mathbf{F}=\mathbf{F}_{1}+\mathbf{F}_{2}$ with

$$
\mathbf{F}_{1}(x, y, z)=\left(x^{2}, 0, \sin (z)\right), \text { and } \mathbf{F}_{2}(x, y, z)=\left(e^{y z}, x^{2} z^{2}, 0\right)
$$

By the calculation in question $4, \mathbf{F}_{1}$ is irrotational and \mathbf{F}_{2} is incompressible.
(b) There is a slight complication in this part, if $\mathbf{F}(x, y, z)=\left(x+y+z, y^{2}+1, \ln (x y z)\right)$, then we want to find the same kind of decomposition as in part (a). It's tempting (and the right idea) to use the identity $\ln (x y z)=\ln (x y)+\ln (z)$, but this ignores a subtle point: using this identity reduces the domain of definition of the function.

The function $\ln (x y z)$ is defined as long as $x y z>0$, i.e., in the eight octants in \mathbb{R}^{3}, the function $\ln (x y z)$ is defined in four of them. The common domain of $\ln (z)$ and $\ln (x y)$ is only two of the octants, and so we'd be losing half of the domain of our vector field.

The right identity to use is

$$
\ln (x y z)=\left\{\begin{array}{cl}
\ln (x y)+\ln (z) & \text { if } z>0 \\
\ln (-x y)+\ln (-z) & \text { if } z<0
\end{array}\right.
$$

which makes sense on all the domain of $\ln (x y z)$.
With that in mind, one possible decomposition is $\mathbf{F}=\mathbf{F}_{1}+\mathbf{F}_{2}$ with

$$
\mathbf{F}_{1}=\left\{\begin{array}{cc}
\left(x, y^{2}+1, \ln (z)\right) & \text { if } z>0 \\
\left(x, y^{2}+1, \ln (-z)\right) & \text { if } z<0
\end{array}\right.
$$

and

$$
\mathbf{F}_{2}=\left\{\begin{array}{cl}
(y+z, 0, \ln (x y)) & \text { if } z>0 \\
(y+z, 0, \ln (-x y)) & \text { if } z<0
\end{array} .\right.
$$

The decomposition is not unique. If $\mathbf{F}=\mathbf{F}_{1}+\mathbf{F}_{2}$ is a decomposition with \mathbf{F}_{1} irrotational, and \mathbf{F}_{2} incompressible, and \mathbf{G} is any vector field with $\operatorname{Curl}(\mathbf{G})=0$ and $\operatorname{Div}(\mathbf{G})=0$, then $\mathbf{F}=\left(\mathbf{F}_{1}+\mathbf{G}\right)+\left(\mathbf{F}_{2}-\mathbf{G}\right)$ is another such decomposition.

We even know how to find such vector fields \mathbf{G} : by $4(\mathrm{~d})$ these vector fields are exactly the vector fields of harmonic functions. There are therefore infinitely many possible decompositions into a sum of irrotational and incompressible vector fields.

