1. If f is a function on \mathbb{R}^{3}, and $\mathbf{F}=\left(F_{1}, F_{2}, F_{3}\right)$ a vector field on \mathbb{R}^{3}, then $f \mathbf{F}=$ $\left(f F_{1}, f F_{2}, f F_{3}\right)$, so

$$
\begin{aligned}
\operatorname{Div}(f \mathbf{F}) & =\frac{\partial}{\partial x}\left(f F_{1}\right)+\frac{\partial}{\partial y}\left(f F_{2}\right)+\frac{\partial}{\partial z}\left(f F_{3}\right) \\
& =\left(\frac{\partial f}{\partial x} F_{1}+f \frac{\partial F_{1}}{\partial x}\right)+\left(\frac{\partial f}{\partial y} F_{2}+f \frac{\partial F_{2}}{\partial y}\right)+\left(\frac{\partial f}{\partial z} F_{3}+f \frac{\partial F_{3}}{\partial z}\right) \\
& =\left(f \frac{\partial F_{1}}{\partial x}+f \frac{\partial F_{2}}{\partial y}+f \frac{\partial F_{3}}{\partial z}\right)+\left(\frac{\partial f}{\partial x} F_{1}+\frac{\partial f}{\partial y} F_{2}+\frac{\partial f}{\partial z} F_{3}\right) \\
& =f \operatorname{Div}(\mathbf{F})+\mathbf{F} \cdot \operatorname{grad}(f)
\end{aligned}
$$

2. One parameterization, which is just a variant of the way we parameterize the circle, is to define

$$
\begin{aligned}
& x(t)=\cos ^{3}(t) \\
& y(t)=\sin ^{3}(t)
\end{aligned}
$$

Then it's certainly true that $(x(t))^{2 / 3}+(y(t))^{2 / 3}=\cos ^{2}(t)+\sin ^{2}(t)=1$, so this is a parameterization of the curve. Both $\cos ^{3}(t)$ and $\sin ^{3}(t)$ have derivatives of all orders, so this is a C^{∞} parameterization. It is therefore also continuous and differentiable. (The curve might not look like it should have such a nice parameterization, but it does.)
3. We want to compute the integral of the function $f(x, y)=x y-x-y+1=(x-1)(y-1)$ along different curves connecting $(1,0)$ and $(0,1)$.
(a) \mathbf{c}_{1}, the circular $\operatorname{arc} \mathbf{c}_{1}(t)=(\cos (t), \sin (t)), 0 \leq t \leq \pi / 2$.

The speed is $\left\|\mathbf{c}_{1}^{\prime}(t)\right\|=\sqrt{(-\sin (t))^{2}+(\cos (t))^{2}}=1$, and $f\left(\mathbf{c}_{1}(t)\right)=\cos (t) \sin (t)-$ $\cos (t)-\sin (t)+1$, so the integral becomes

$$
\begin{aligned}
\int_{\mathbf{c}_{1}} f d s & =\int_{0}^{\pi / 2} \sin (t) \cos (t)-\cos (t)-\sin (t)+1 d t \\
& =\frac{\sin ^{2}(t)}{2}-\sin (t)+\cos (t)+\left.t\right|_{0} ^{\pi / 2} \\
& =\left(\frac{1}{2}-1+0+\frac{\pi}{2}\right)-\left(\frac{0}{2}-0+1+0\right)=\frac{\pi-3}{2}
\end{aligned}
$$

(b) \mathbf{c}_{2}, the straight line segment $\mathbf{c}_{2}(t)=(1-t, t), 0 \leq t \leq 1$.

The speed is $\left\|\mathbf{c}_{2}^{\prime}(t)\right\|=\sqrt{(-1)^{2}+(1)^{2}}=\sqrt{2}$, and $f\left(\mathbf{c}_{2}(t)\right)=(1-t) t-(1-t)-t+1=$ $t-t^{2}$, so the integral becomes

$$
\begin{aligned}
\int_{\mathbf{c}_{2}} f d s & =\int_{0}^{1} \sqrt{2}\left(t-t^{2}\right) d t \\
& =\sqrt{2}\left(\frac{t^{2}}{2}-\frac{t^{3}}{3}\right)_{t=0}^{t=1}=\frac{\sqrt{2}}{6} .
\end{aligned}
$$

(c) \mathbf{c}_{3}, from $(1,0)$ horizontally to the origin, then vertically to $(0,1)$.

This curves is parameterized in two pieces. The first piece is $\mathbf{c}_{3,1}(t)=(1-t, 0)$ for $0 \leq t \leq 1$.

The speed is $\left\|\mathbf{c}_{3,1}^{\prime}(t)\right\|=\sqrt{(-1)^{2}+(0)^{2}}=1$, and $f\left(\mathbf{c}_{3,1}(t)\right)=t$, so the first piece of the integral becomes

$$
\int_{\mathbf{c}_{3,1}} f d s=\int_{0}^{1} t d t=\frac{1}{2} .
$$

The second piece is $\mathbf{c}_{3,2}(t)=(0, t)$ for $0 \leq t \leq 1$.
The speed is $\left\|\mathbf{c}_{3,2}^{\prime}(t)\right\|=\sqrt{(0)^{2}+(1)^{2}}=1$, and $f\left(\mathbf{c}_{3,2}(t)\right)=1-t$, so the second piece of the integral becomes

$$
\int_{\mathbf{c}_{3,2}} f d s=\int_{0}^{1}(1-t) d t=\frac{1}{2}
$$

The total integral along \mathbf{c}_{3} is just the sum of these two terms:

$$
\int_{\mathbf{c}_{3}} f d s=\frac{1}{2}+\frac{1}{2}=1
$$

(d) \mathbf{c}_{4}, from $(1,0)$ vertically to $(1,1)$, then horizontally to $(0,1)$.

This is again something we compute in two pieces. The first piece is $\mathbf{c}_{4,1}(t)=(1, t)$ for $0 \leq t \leq 1$.

The speed is $\left\|\mathbf{c}_{4,1}^{\prime}(t)\right\|=\sqrt{(0)^{2}+(1)^{2}}=1$, and $f\left(\mathbf{c}_{4,1}(t)\right)=0$, so the first piece of the integral is just

$$
\int_{\mathbf{c}_{4,1}} f d s=\int_{0}^{1} 0 d t=0
$$

The second piece is $\mathbf{c}_{4,2}(t)=(1-t, 1)$ for $0 \leq t \leq 1$.
The speed is $\left\|\mathbf{c}_{4,2}^{\prime}(t)\right\|=\sqrt{(-1)^{2}+(0)^{2}}=1$, and $f\left(\mathbf{c}_{4,2}(t)\right)=0$ again, so again we have

$$
\int_{\mathbf{c}_{4,2}} f d s=\int_{0}^{1} 0 d t=0
$$

The total integral along \mathbf{c}_{3} is the sum

$$
\int_{\mathbf{c}_{4}} f d s=0+0=0
$$

(e) \mathbf{c}_{5}, the circular $\operatorname{arc} \mathbf{c}_{5}(t)=(\cos (t),-\sin (t)), 0 \leq t \leq 3 \pi / 2$.

The speed is $\left\|\mathbf{c}_{5}^{\prime}(t)\right\|=\sqrt{(-\sin (t))^{2}+(-\cos (t))^{2}}=1$, and $f\left(\mathbf{c}_{5}(t)\right)=-\sin (t) \cos (t)-$ $\cos (t)+\sin (t)+1$, so the integral becomes

$$
\begin{aligned}
\int_{\mathbf{c}} f d s & =\int_{0}^{3 \pi / 2}-\sin (t) \cos (t)-\cos (t)+\sin (t)+1 d t \\
& =\frac{\cos ^{2}(t)}{2}-\sin (t)-\cos (t)+\left.t\right|_{t=0} ^{t=3 \pi / 2} \\
& =\left(\frac{0}{2}-(-1)-0+\frac{3 \pi}{2}\right)-\left(\frac{1}{2}-0-1+0\right)=\frac{3 \pi+3}{2}
\end{aligned}
$$

4. If \mathbf{c} is the "twisted cubic:" $\mathbf{c}(t)=\left(t, t^{2}, t^{3}\right)$ for $t \in[0,4]$, then $\mathbf{c}^{\prime}(t)=\left(1,2 t, 3 t^{2}\right)$, so $\left\|\mathbf{c}^{\prime}(t)\right\|=\sqrt{1+4 t^{2}+9 t^{4}}$. If the function f is $f(x, y, z)=\sqrt{9 x z+4 y+1}$ then

$$
f(\mathbf{c}(t))=f\left(t, t^{2}, t^{3}\right)=\sqrt{9 \cdot t \cdot t^{3}+4 \cdot t^{2}+1}=\sqrt{1+4 t^{2}+9 t^{4}}
$$

Therefore,

$$
\begin{aligned}
\int_{\mathbf{c}} f d s & =\int_{0}^{4}\left(\sqrt{1+4 t^{2}+9 t^{4}}\right)^{2} d t \\
& =\int_{0}^{4} 1+4 t^{2}+9 t^{4} d t \\
& =t+\frac{4}{3} t^{3}+\left.\frac{9}{5} t^{5}\right|_{t=0} ^{t=4}=\frac{28988}{15}=1932+\frac{8}{15}
\end{aligned}
$$

5. To find the average value of a function along a curve, we find its integral along the curve, and divide by the arclength. For the function $f(x, y, z)=x y z$, along the helix

$$
\mathbf{c}(t)=(\sin (t), 8 t, \cos (t)), \quad t \in[0,6 \pi],
$$

the speed is $\|\mathbf{c}(t)\|=\sqrt{(\cos (t))^{2}+(8)^{2}+(-\sin (t))^{2}}=\sqrt{65}$, and $f(\mathbf{c}(t))=8 t \cos (t) \sin (t)$.
Therefore the integral of f along \mathbf{c} is

$$
\begin{aligned}
\int_{\mathbf{c}} f d s & =\int_{0}^{6 \pi} 8 \sqrt{65} t \cos (t) \sin (t) d t \\
& =\sqrt{65}\left(4 t \sin ^{2}(t)+\sin (2 t)-2 t\right)_{t=0}^{t=6 \pi} \\
& =\sqrt{65}(0+0-12 \pi)-\sqrt{65}(0+0-0)=-12 \sqrt{65} \pi
\end{aligned}
$$

The arclength is easier to find, since the speed is a constant $\sqrt{65}$, the arclength is

$$
\int_{0}^{6 \pi} \sqrt{65} d t=6 \sqrt{65} \pi
$$

The average value of f along \mathbf{c} is therefore

$$
\frac{-12 \sqrt{65} \pi}{6 \sqrt{65} \pi}=-2 .
$$

