- 1. Connected or simply connected?
 - (a) \mathbb{R}^2 with the circle $x^2 + y^2 = 1$ removed: neither connected nor simply connected.
 - (b) \mathbb{R}^3 with the circle $x^2 + y^2 = 1$, z = 0 removed: connected but not simply connected.
 - (c) The set $\{(x, y) \mid 1 < x^2 + y^2 < 2\}$ in \mathbb{R}^2 : connected but not simply connected.
 - (d) \mathbb{R}^3 with the helix $(\cos(t), \sin(t), t), t \in [0, \pi]$ removed: both connected and simply connected.
 - (e) The set $\{(x, y) \mid x^2 y^2 < 0\}$ in \mathbb{R}^2 : simply connected but not connected.
- 2. For the three curves
 - \mathbf{c}_1 : The half-circle $(\cos(t), \sin(t), 0), t \in [0, \pi], (not 2\pi!)$
 - **c**₂: The segment $(-t, t^2 1, 1 t^2)$ of a parabola, $t \in [-1, 1]$, and
 - **c**₃: The straight line $(-t, 0, 0), t \in [-1, 1],$

let's first calculate the velocity vectors, since we'll need them for both integrals.

$$\mathbf{c}'_1(t) = (-\sin(t), \cos(t), 0), \quad \mathbf{c}'_2(t) = (-1, 2t, -2t), \quad \mathbf{c}'_3(t) = (-1, 0, 0).$$

(a) For
$$\mathbf{F} = (-y, x, z)$$
,

$$\int_{\mathbf{c}_1} \mathbf{F} \cdot ds = \int_0^{\pi} \mathbf{F}(\mathbf{c}_1(t)) \cdot \mathbf{c}_1'(t) dt = \int_0^{\pi} (-\sin(t), \cos(t), 0) \cdot (-\sin(t), \cos(t), 0) dt$$
$$= \int_0^{\pi} \sin^2(t) + \cos^2(t) dt = \pi.$$

$$\begin{aligned} \int_{\mathbf{c}_2} \mathbf{F} \cdot ds &= \int_{-1}^{1} \mathbf{F}(\mathbf{c}_2(t)) \cdot \mathbf{c}_2'(t) \, dt = \int_{-1}^{1} (1 - t^2, -t, 1 - t^2) \cdot (-1, 2t, -2t) \, dt \\ &= \int_{-1}^{1} -1 - 2t - t^2 + 2t^3 \, dt = \left(-t - t^2 - \frac{1}{3}t^3 + \frac{1}{2}t^4\right)_{t=-1}^{t=1} \\ &= -\frac{8}{3} \end{aligned}$$

$$\int_{\mathbf{c}_3} \mathbf{F} \cdot ds = \int_{-1}^1 \mathbf{F}(\mathbf{c}_3(t)) \cdot \mathbf{c}_3'(t) dt = \int_{-1}^1 (0, -t, 0) \cdot (-1, 0, 0) dt$$

=
$$\int_{-1}^1 0 dt = 0.$$

(b) For $\mathbf{G} = (e^{yz}, xz e^{yz}, xy e^{yz}),$

$$\int_{\mathbf{c}_1} \mathbf{G} \cdot ds = \int_0^{\pi} \mathbf{G}(\mathbf{c}_1(t)) \cdot \mathbf{c}_1'(t) dt = \int_0^{\pi} (e^0, 0, \sin(t)\cos(t)e^0) \cdot (-\sin(t), \cos(t), 0) dt$$
$$= \int_0^{\pi} -\sin(t) dt = -2.$$

$$\begin{aligned} \int_{\mathbf{c}_2} \mathbf{G} \cdot ds &= \int_{-1}^{1} \mathbf{G}(\mathbf{c}_2(t)) \cdot \mathbf{c}_2'(t) \, dt \\ &= \int_{-1}^{1} \left(e^{-(t^2 - 1)^2}, \, (t^3 - t) e^{-(t^2 - 1)^2}, \, (t - t^3) e^{-(t^2 - 1)^2} \right) \cdot (-1, \, 2t, \, -2t) \, dt \\ &= \int_{-1}^{1} (4t^4 - 4t^2 - 1) e^{-(t^2 - 1)^2} \, dt \\ &= -t e^{-(t^2 - 1)^2} \Big|_{t=-1}^{t=1} = -1e^0 - (-(-1)e^0) = -2. \end{aligned}$$

$$\begin{aligned} \int_{\mathbf{c}_3} \mathbf{G} \cdot ds &= \int_{-1}^1 \mathbf{G}(\mathbf{c}_3(t)) \cdot \mathbf{c}_3'(t) \, dt = \int_{-1}^1 (e^0, \, 0, \, 0) \cdot (-1, 0, 0) \, dt \\ &= \int_{-1}^1 -1 \, dt = -2. \end{aligned}$$

(c) Both **F** and **G** are defined on all of \mathbb{R}^2 . For a conservative vector field (with any domain of definition), the path integrals connecting any two points p and q are independent of the path (which is assumed to lie in the domain of definition of the vector field).

The calculations in part (a) show that \mathbf{F} cannot be a conservative vector field. The calculations in part (b) suggest that \mathbf{G} might be a conservative vector field, and in fact it is. We can verify this by either

- (i) computing that $\operatorname{Curl}(\mathbf{G}) = (0, 0, 0)$, and using our theorems: since the domain of definition of **G** is simply connected, this is enough to imply that there must be a function g with $\mathbf{G} = \nabla g$. Or
- (ii) finding the function g directly. In this case $g(x, y, z) = x e^{yz}$ is clearly a solution.
- 3. We're starting with the vector field $\mathbf{F}(x,y) = \left(\frac{y}{x^2+y^2}, \frac{-x}{x^2+y^2}\right)$.
 - (a) The domain of definition of ${\bf F}$ is \mathbb{R}^2 minus the origin. It is connected but not simply connected.
 - (b) By the " \mathbb{R}^2 curl" of a vector field $\mathbf{F} = (F_1, F_2)$ we mean the function $\frac{\partial F_2}{\partial x} \frac{\partial F_1}{\partial y}$. For our vector field \mathbf{F} we have

$$\frac{\partial F_2}{\partial x} = \frac{-1}{x^2 + y^2} + \frac{2x^2}{(x^2 + y^2)^2} \\ \frac{\partial F_1}{\partial y} = \frac{1}{x^2 + y^2} - \frac{2y^2}{(x^2 + y^2)^2}$$

 So

Curl(**F**) =
$$\frac{-1}{x^2 + y^2} + \frac{2x^2}{(x^2 + y^2)^2} - \left(\frac{1}{x^2 + y^2} - \frac{2y^2}{(x^2 + y^2)^2}\right)$$

= $\frac{-2}{x^2 + y^2} + \frac{2x^2 + 2y^2}{(x^2 + y^2)^2}$
= 0.

(c) The curve **c** is the unit circle, oriented counterclockwise. We can use the usual parameterization $\mathbf{c}(t) = (\cos(t), \sin(t))$ for $t \in [0, 2\pi]$, with velocity vector $\mathbf{c}'(t) = (-\sin(t), \cos(t))$.

$$\int_{\mathbf{c}} \mathbf{F} \cdot ds = \int_{0}^{2\pi} \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t) dt$$
$$= \int_{0}^{2\pi} (\sin(t), -\cos(t)) \cdot (-\sin(t), \cos(t)) dt$$
$$= \int_{0}^{2\pi} -1 dt = -2\pi$$

(d) If $\mathbf{F} = \nabla f$ for some function f then for any closed curve \mathbf{c} in the domain of \mathbf{F} we would have to have

$$\int_{\mathbf{c}} \mathbf{F} \cdot \, ds = 0$$

One way to see this is to note that if we pick any point p of \mathbf{c} , we can consider \mathbf{c} to be a curve that begins and ends at \mathbf{c} . Then, by the formula we proved in class (theorem 5.5 in the book)

$$\int_{\mathbf{c}} \mathbf{F} \cdot ds = f(p) - f(p) = 0.$$

(e) From parts (c) and (d) we see that \mathbf{F} cannot be the gradient of any function f.

The "curl test" is a local test (i.e., since it involves derivatives, it only involves very local information about the vector field \mathbf{F}) and only guarantees that locally there is a function f with $\mathbf{F} = \nabla f$. The problem of piecing these local possibilities of functions together to make a global function then depends on the topology of the domain of \mathbf{F} .

In this case since the domain of \mathbf{F} is not simply connected, there is no guarantee that these local functions can be pieced together, and in fact our vector field \mathbf{F} gives an example of a case where this patching is not possible.

- 4. Let f be the function $f(x, y) = x^2 y$, then
 - (a) $f(1,1) f(-1,-1) = 1^2 \cdot 1 (-1)^2(-1) = 2.$
 - (b) $\mathbf{F} = \nabla f = (2xy, x^2).$

Now we look at the curves

- **c**₁: The half circle $(\sqrt{2}\cos(t), \sqrt{2}\sin(t)), t \in [-3\pi/4, \pi/4].$ **c**₂: The half circle $(\sqrt{2}\cos(t), -\sqrt{2}\sin(t)), t \in [3\pi/4, 7\pi/4].$
- \mathbf{c}_3 : The straight line (t, t) $t \in [-1, 1]$.
- C3. The straight line (ι, ι) $\iota \in [-1, 1]$.

with velocity vectors

$$\mathbf{c}_{1}'(t) = (-\sqrt{2}\sin(t), \sqrt{2}\cos(t)) \quad \mathbf{c}_{2}'(t) = (-\sqrt{2}\sin(t), -\sqrt{2}\cos(t)) \quad \mathbf{c}_{3}'(t) = (1, 1)$$

The integrals along these curves are

$$\begin{aligned} \int_{\mathbf{c}_{1}} \mathbf{F} \cdot ds &= \int_{-3\pi/4}^{\pi/4} \mathbf{F}(\mathbf{c}_{1}(t)) \cdot \mathbf{c}_{1}'(t) dt \\ &= \int_{-3\pi/4}^{\pi/4} (4\sin(t)\cos(t), 2\cos^{2}(t)) \cdot (-\sqrt{2}\sin(t), \sqrt{2}\cos(t)) dt \\ &= \int_{-3\pi/4}^{\pi/4} -4\sqrt{2}\sin^{2}(t)\cos(t) + 2\sqrt{2}\cos^{3}(t) dt \\ &= 2\sqrt{2}\cos^{2}(t)\sin(t) \Big|_{t=-3\pi/4}^{\pi/4} = 1 - (-1) = 2. \end{aligned}$$

(c)

$$\int_{\mathbf{c}_{2}} \mathbf{F} \cdot ds = \int_{3\pi/4}^{7\pi/4} \mathbf{F}(\mathbf{c}_{2}(t)) \cdot \mathbf{c}_{2}'(t) dt$$

$$= \int_{3\pi/4}^{7\pi/4} (-4\cos(t)\sin(t), 2\cos^{2}(t)) \cdot (-\sqrt{2}\sin(t), -\sqrt{2}\cos(t))$$

$$= \int_{3\pi/4}^{7\pi/4} 4\sqrt{2}\sin^{2}(t)\cos(t) - 2\sqrt{2}\cos^{3}(t) dt$$

$$= -2\sqrt{2}\cos^{2}(t)\sin(t) \Big|_{t=3\pi/4}^{7\pi/4} = 1 - (-1) = 2.$$

$$\int_{\mathbf{c}_3} \mathbf{F} \cdot ds = \int_{-1}^{1} \mathbf{F}(\mathbf{c}_3(t)) \cdot \mathbf{c}_3'(t) dt = \int_{-1}^{1} (2t^2, t^2) \cdot (1, 1) dt$$
$$= \int_{-1}^{1} 3t^2 dt = t^3 \Big|_{t=-1}^{t=1} = 1 - (-1)^3 = 2.$$

(d) The answers to (b) and (c) are of course all the same. The reason is the calculation we did in class (theorem 5.5 in the book again), if $\mathbf{F} = \nabla f$ is a conservative vector field, then for any oriented curve **c** in the domain of **F** starting at point q and ending at point p, we have

$$\int_{\mathbf{c}} \mathbf{F} \cdot ds = f(p) - f(q).$$

The curves above all connect q = (-1, -1) to p = (1, 1), which explains the calculations in part (c).