
Math 280 Answers for Homework 7

1. Connected or simply connected?

(a) R
2 with the circle x2 + y2 = 1 removed: neither connected nor simply connected.

(b) R
3 with the circle x2+y2 = 1, z = 0 removed: connected but not simply connected.

(c) The set {(x, y) | 1 < x2 + y2 < 2} in R
2: connected but not simply connected.

(d) R
3 with the helix (cos(t), sin(t), t), t ∈ [0, π] removed: both connected and simply

connected.

(e) The set {(x, y) | x2 − y2 < 0} in R
2: simply connected but not connected.

2. For the three curves

c1: The half-circle (cos(t), sin(t), 0), t ∈ [0, π], (not 2π!)
c2: The segment (−t, t2 − 1, 1 − t2) of a parabola, t ∈ [−1, 1], and
c3: The straight line (−t, 0, 0), t ∈ [−1, 1],

let’s first calculate the velocity vectors, since we’ll need them for both integrals.

c
′

1(t) = (− sin(t), cos(t), 0), c
′

2(t) = (−1, 2t, −2t), c
′

3(t) = (−1, 0, 0).

(a) For F = (−y, x, z),

∫

c1

F · ds =

∫ π

0

F(c1(t)) · c′1(t) dt =

∫ π

0

(− sin(t), cos(t), 0) · (− sin(t), cos(t), 0) dt

=

∫ π

0

sin2(t) + cos2(t) dt = π.

∫

c2

F · ds =

∫ 1

−1

F(c2(t)) · c′2(t) dt =

∫ 1

−1

(1 − t2, −t, 1 − t2) · (−1, 2t, −2t) dt

=

∫ 1

−1

−1 − 2t − t2 + 2t3 dt =

(

−t − t2 − 1

3
t3 +

1

2
t4

)t=1

t=−1

= −8

3
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∫

c3

F · ds =

∫ 1

−1

F(c3(t)) · c′3(t) dt =

∫ 1

−1

(0, −t, 0) · (−1, 0, 0) dt

=

∫ 1

−1

0 dt = 0.

(b) For G = (eyz, xz eyz, xy eyz),

∫

c1

G · ds =

∫ π

0

G(c1(t)) · c′1(t) dt =

∫ π

0

(e0, 0, sin(t) cos(t) e0) · (− sin(t), cos(t), 0) dt

=

∫ π

0

− sin(t) dt = −2.

∫

c2

G · ds =

∫ 1

−1

G(c2(t)) · c′2(t) dt

=

∫ 1

−1

(

e−(t2−1)2 , (t3 − t)e−(t2−1)2 , (t − t3)e−(t2−1)2
)

· (−1, 2t, −2t) dt

=

∫ 1

−1

(4t4 − 4t2 − 1)e−(t2−1)2 dt

= −te−(t2−1)2
∣

∣

∣

t=1

t=−1
= −1e0 − (−(−1)e0) = −2.

∫

c3

G · ds =

∫ 1

−1

G(c3(t)) · c′3(t) dt =

∫ 1

−1

(e0, 0, 0) · (−1, 0, 0) dt

=

∫ 1

−1

−1 dt = −2.

(c) Both F and G are defined on all of R
2. For a conservative vector field (with any

domain of definition), the path integrals connecting any two points p and q are
independent of the path (which is assumed to lie in the domain of definition of the
vector field).

The calculations in part (a) show that F cannot be a conservative vector field.
The calculations in part (b) suggest that G might be a conservative vector field,
and in fact it is. We can verify this by either
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(i) computing that Curl(G) = (0, 0, 0), and using our theorems: since the do-
main of definition of G is simply connected, this is enough to imply that
there must be a function g with G = ∇g. Or

(ii) finding the function g directly. In this case g(x, y, z) = x eyz is clearly a
solution.

3. We’re starting with the vector field F(x, y) =
(

y
x2+y2 ,

−x
x2+y2

)

.

(a) The domain of definition of F is R
2 minus the origin. It is connected but not

simply connected.

(b) By the “R
2 curl” of a vector field F = (F1, F2) we mean the function ∂F2

∂x
− ∂F1

∂y
.

For our vector field F we have

∂F2

∂x
=

−1

x2 + y2
+

2x2

(x2 + y2)2

∂F1

∂y
=

1

x2 + y2
− 2y2

(x2 + y2)2

So

Curl(F) =
−1

x2 + y2
+

2x2

(x2 + y2)2 −
(

1

x2 + y2
− 2y2

(x2 + y2)2

)

=
−2

x2 + y2
+

2x2 + 2y2

(x2 + y2)2

= 0.

(c) The curve c is the unit circle, oriented counterclockwise. We can use the usual
parameterization c(t) = (cos(t), sin(t)) for t ∈ [0, 2π], with velocity vector c

′(t) =
(− sin(t), cos(t)).

∫

c

F · ds =

∫ 2π

0

F(c(t)) · c′(t) dt

=

∫ 2π

0

(sin(t), − cos(t)) · (− sin(t), cos(t)) dt

=

∫ 2π

0

−1 dt = −2π
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(d) If F = ∇f for some function f then for any closed curve c in the domain of F we
would have to have

∫

c

F · ds = 0.

One way to see this is to note that if we pick any point p of c, we can consider c

to be a curve that begins and ends at c. Then, by the formula we proved in class
(theorem 5.5 in the book)

∫

c

F · ds = f(p) − f(p) = 0.

(e) From parts (c) and (d) we see that F cannot be the gradient of any function f .

The “curl test” is a local test (i.e., since it involves derivatives, it only involves
very local information about the vector field F) and only guarantees that locally
there is a function f with F = ∇f . The problem of piecing these local possibilities
of functions together to make a global function then depends on the topology of
the domain of F.

In this case since the domain of F is not simply connected, there is no guarantee
that these local functions can be pieced together, and in fact our vector field F

gives an example of a case where this patching is not possible.

4. Let f be the function f(x, y) = x2y, then

(a) f(1, 1) − f(−1,−1) = 12 · 1 − (−1)2(−1) = 2.

(b) F = ∇f = (2xy, x2).

Now we look at the curves

c1: The half circle (
√

2 cos(t),
√

2 sin(t)), t ∈ [−3π/4, π/4].

c2: The half circle (
√

2 cos(t), −
√

2 sin(t)), t ∈ [3π/4, 7π/4].
c3: The straight line (t, t) t ∈ [−1, 1].

with velocity vectors

c
′

1(t) = (−
√

2 sin(t),
√

2 cos(t)) c
′

2(t) = (−
√

2 sin(t), −
√

2 cos(t)) c
′

3(t) = (1, 1).

The integrals along these curves are
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(c)

∫

c1

F · ds =

∫ π/4

−3π/4

F(c1(t)) · c′1(t) dt

=

∫ π/4

−3π/4

(4 sin(t) cos(t), 2 cos2(t)) · (−
√

2 sin(t),
√

2 cos(t)) dt

=

∫ π/4

−3π/4

−4
√

2 sin2(t) cos(t) + 2
√

2 cos3(t) dt

= 2
√

2 cos2(t) sin(t)
∣

∣

∣

π/4

t=−3π/4
= 1 − (−1) = 2.

∫

c2

F · ds =

∫ 7π/4

3π/4

F(c2(t)) · c′2(t) dt

=

∫ 7π/4

3π/4

(−4 cos(t) sin(t), 2 cos2(t)) · (−
√

2 sin(t), −
√

2 cos(t))

=

∫ 7π/4

3π/4

4
√

2 sin2(t) cos(t) − 2
√

2 cos3(t) dt

= −2
√

2 cos2(t) sin(t)
∣

∣

∣

7π/4

t=3π/4
= 1 − (−1) = 2.

∫

c3

F · ds =

∫ 1

−1

F(c3(t)) · c′3(t) dt =

∫ 1

−1

(2t2, t2) · (1, 1) dt

=

∫ 1

−1

3t2 dt = t3
∣

∣

t=1

t=−1
= 1 − (−1)3 = 2.

(d) The answers to (b) and (c) are of course all the same. The reason is the calculation
we did in class (theorem 5.5 in the book again), if F = ∇f is a conservative vector
field, then for any oriented curve c in the domain of F starting at point q and
ending at point p, we have

∫

c

F · ds = f(p) − f(q).

The curves above all connect q = (−1,−1) to p = (1, 1), which explains the
calculations in part (c).
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