Math 280 Answers for Homework 7

1. Connected or simply connected?

a) R? with the circle 22 + y? = 1 removed: neither connected nor simply connected.

(a)
(b) R? with the circle 22+y* = 1, 2 = 0 removed: connected but not simply connected.
(c) The set {(x,y) | 1 < 2* +y* < 2} in R% connected but not simply connected.

)

(d) R?® with the helix (cos(t), sin(t), ), t € [0, 7] removed: both connected and simply
connected.

(e) The set {(x,y) | * — y* < 0} in R?% simply connected but not connected.

2. For the three curves

: The half-circle (cos(t), sin(t), 0), ¢t € [0, 7], (not 27!)
cg. The segment (—¢,¢* — 1,1 — ¢?) of a parabola, t € [—1, 1], and
c3: The straight line (—t,0,0), ¢t € [-1,1],

let’s first calculate the velocity vectors, since we’ll need them for both integrals.

c|(t) = (—sin(t), cos(t), 0), chH(t) = (-1, 2¢, —=2¢t), c4(t) = (—1,0,0).

(a) For F = (—y,x, 2),

/F-ds _ /OﬂF(Cl(t))-c’l(t)dt:/oﬂ(—sin(t),cos(t),0)-(—sin(t),cos(t),0)dt

= / sin?(t) + cos®(t) dt = .
0

/ F-ds = /1 F(cy(t)) - ch(t) dt = /1(1 — %, —t, 1 —1%) - (—1, 2t, —2t) dt
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L 1, 1,\7"
= / —1—2t—t2+2t3dt:<—t—t2—§t3+—t4)
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/c, F-ds = /_l F(cs(t)) - c4(t) dt = /_1 (0, —t, 0) - (=1, 0, 0) dt

1

1
= / 0dt=0.
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(b) For G = (e¥*, xz e¥*, xy e¥?),

/G-ds =

' G(cy(t)) - ci(t) dt = /Ow(eo, 0, sin(t) cos(t) €°) - (—sin(t), cos(t), 0) dt

s

—sin(t) dt = —2.
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G(ca(t)) - c5(t) di

/G-ds =

==

/ <e—(f2‘1>2, (£ —t)e 0 (1~ t3)e‘(t2‘1)2> (=1, 2t, —2t) dt
-1
1
- / (4t — 42 — 1)@=V gt
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t=1

= —1e" — (=(=1)e’) = —2.
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/C‘ G.-ds = /_11 G(cs(1) - c4(t) dt:/_ (.0, 0)- (—1.0,0) dt

1
= / —ldt = —2.
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(c) Both F and G are defined on all of R?. For a conservative vector field (with any
domain of definition), the path integrals connecting any two points p and ¢ are
independent of the path (which is assumed to lie in the domain of definition of the
vector field).

The calculations in part (a) show that F cannot be a conservative vector field.
The calculations in part (b) suggest that G might be a conservative vector field,
and in fact it is. We can verify this by either
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(i) computing that Curl(G) = (0,0,0), and using our theorems: since the do-
main of definition of G is simply connected, this is enough to imply that
there must be a function g with G = Vg. Or

(ii) finding the function ¢ directly. In this case g(x,y,z) = xe¥* is clearly a
solution.

3. We're starting with the vector field F(z,y) = (ﬁ, ﬁ)

(a) The domain of definition of F is R? minus the origin. It is connected but not
simply connected.

(b) By the “R? curl” of a vector field F = (F}, F;) we mean the function % - %—1;1.

For our vector field F we have

ory, -1 n 222
or a4 y? (x2 + y2)2
oF; B 1 29/
Oy 4y’ (22 +y2)?
So
—1 222 1 29/
ety (2% +y?) Tty (2% +y?)

—2 222 + 212
w2yt (a2 4 y?)’
= 0.

(¢) The curve c is the unit circle, oriented counterclockwise. We can use the usual
parameterization c(t) = (cos(t), sin(t)) for t € [0, 27|, with velocity vector ¢'(t) =
(—sin(t), cos(t)).

/F-ds =

7T(sin(t), —cos(t)) - (—sin(t), cos(t)) dt

1
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(d) If F =V f for some function f then for any closed curve c¢ in the domain of F we
would have to have
/ F.ds=0.

One way to see this is to note that if we pick any point p of ¢, we can consider c
to be a curve that begins and ends at c¢. Then, by the formula we proved in class
(theorem 5.5 in the book)

JFds=s0) - ) =0,

(¢

(e) From parts (c) and (d) we see that F cannot be the gradient of any function f.

The “curl test” is a local test (i.e., since it involves derivatives, it only involves
very local information about the vector field F) and only guarantees that locally
there is a function f with F = V f. The problem of piecing these local possibilities
of functions together to make a global function then depends on the topology of
the domain of F.

In this case since the domain of F is not simply connected, there is no guarantee
that these local functions can be pieced together, and in fact our vector field F
gives an example of a case where this patching is not possible.

4. Let f be the function f(z,y) = x?y, then

() F(L1) = f(—1,—1) = 11— (~1)(~1) =2
(b) F =Vf = (2zy, 2?).

Now we look at the curves

c;: The half circle (v/2cos(t), v2sin(t)), t € [-37/4, 7/4].
cy: The half circle (v/2cos(t), —v/2sin(t)), t € [37/4, Tr/4].
c3: The straight line (¢,¢) t € [—1,1].

with velocity vectors
ci(t) = (—v2sin(t), V2cos(t)) c(t)

The integrals along these curves are

(—v/2sin(t), —v2cos(t)) ch(t) = (1,1).



/ClF. ds = /_ﬂ4 F(ci(t)) - ¢ (t) dt

3m/4

w/4
_ / (4sin(t) cos(t), 2cos’(1)) - (—V/2sin(t), V2 cos(t)) dt

—3n/4

- /7r/4 —4+/2sin%(t) cos(t) + 2v/2 cos®(t) dt

—3n/4
— 23 cos(t) sin(t) ;/4_3 (D=2
/4
/F- ds — /3/4 F(es(t)) - cy(t) dt
/4
_ /3 , (Aees(0sind), 2¢05°0) - (v 2sin(), —Veos(1)
— /77r/4 4V/2sin?(t) cos(t) — 2v/2 cos®(t) dt
37 /4
— 22 cos?(1) sin(t) ::;4/4 (=) =2

1 -1

/CF-ds _ /_1 F(c3(t))-cg(t)dt:/l(2t2, £2).(1,1) dt

1
= / 3tdt =12 =1 (-1 =2

1

(d) The answers to (b) and (c) are of course all the same. The reason is the calculation
we did in class (theorem 5.5 in the book again), if F = V f is a conservative vector
field, then for any oriented curve c in the domain of F starting at point ¢ and
ending at point p, we have

¥ ds= 1) - fla)

The curves above all connect ¢ = (—1,—1) to p = (1,1), which explains the
calculations in part (c).



