1. Connected or simply connected?
(a) \mathbb{R}^{2} with the circle $x^{2}+y^{2}=1$ removed: neither connected nor simply connected.
(b) \mathbb{R}^{3} with the circle $x^{2}+y^{2}=1, z=0$ removed: connected but not simply connected.
(c) The set $\left\{(x, y) \mid 1<x^{2}+y^{2}<2\right\}$ in \mathbb{R}^{2} : connected but not simply connected.
(d) \mathbb{R}^{3} with the helix $(\cos (t), \sin (t), t), t \in[0, \pi]$ removed: both connected and simply connected.
(e) The set $\left\{(x, y) \mid x^{2}-y^{2}<0\right\}$ in \mathbb{R}^{2} : simply connected but not connected.
2. For the three curves
\mathbf{c}_{1} : The half-circle $(\cos (t), \sin (t), 0), t \in[0, \pi],(n o t 2 \pi!)$
\mathbf{c}_{2} : The segment $\left(-t, t^{2}-1,1-t^{2}\right)$ of a parabola, $t \in[-1,1]$, and
\mathbf{c}_{3} : The straight line $(-t, 0,0), t \in[-1,1]$,
let's first calculate the velocity vectors, since we'll need them for both integrals.

$$
\mathbf{c}_{1}^{\prime}(t)=(-\sin (t), \cos (t), 0), \quad \mathbf{c}_{2}^{\prime}(t)=(-1,2 t,-2 t), \quad \mathbf{c}_{3}^{\prime}(t)=(-1,0,0)
$$

(a) For $\mathbf{F}=(-y, x, z)$,

$$
\begin{aligned}
\int_{\mathbf{c}_{1}} \mathbf{F} \cdot d s & =\int_{0}^{\pi} \mathbf{F}\left(\mathbf{c}_{1}(t)\right) \cdot \mathbf{c}_{1}^{\prime}(t) d t=\int_{0}^{\pi}(-\sin (t), \cos (t), 0) \cdot(-\sin (t), \cos (t), 0) d t \\
& =\int_{0}^{\pi} \sin ^{2}(t)+\cos ^{2}(t) d t=\pi
\end{aligned}
$$

$$
\int_{\mathbf{c}_{2}} \mathbf{F} \cdot d s=\int_{-1}^{1} \mathbf{F}\left(\mathbf{c}_{2}(t)\right) \cdot \mathbf{c}_{2}^{\prime}(t) d t=\int_{-1}^{1}\left(1-t^{2},-t, 1-t^{2}\right) \cdot(-1,2 t,-2 t) d t
$$

$$
=\int_{-1}^{1}-1-2 t-t^{2}+2 t^{3} d t=\left(-t-t^{2}-\frac{1}{3} t^{3}+\frac{1}{2} t^{4}\right)_{t=-1}^{t=1}
$$

$$
=-\frac{8}{3}
$$

$$
\begin{aligned}
\int_{\mathbf{c}_{3}} \mathbf{F} \cdot d s & =\int_{-1}^{1} \mathbf{F}\left(\mathbf{c}_{3}(t)\right) \cdot \mathbf{c}_{3}^{\prime}(t) d t=\int_{-1}^{1}(0,-t, 0) \cdot(-1,0,0) d t \\
& =\int_{-1}^{1} 0 d t=0
\end{aligned}
$$

(b) For $\mathbf{G}=\left(e^{y z}, x z e^{y z}, x y e^{y z}\right)$,

$$
\begin{aligned}
\int_{\mathbf{c}_{1}} \mathbf{G} \cdot d s & =\int_{0}^{\pi} \mathbf{G}\left(\mathbf{c}_{1}(t)\right) \cdot \mathbf{c}_{1}^{\prime}(t) d t=\int_{0}^{\pi}\left(e^{0}, 0, \sin (t) \cos (t) e^{0}\right) \cdot(-\sin (t), \cos (t), 0) d t \\
& =\int_{0}^{\pi}-\sin (t) d t=-2
\end{aligned}
$$

$$
\int_{\mathbf{c}_{2}} \mathbf{G} \cdot d s=\int_{-1}^{1} \mathbf{G}\left(\mathbf{c}_{2}(t)\right) \cdot \mathbf{c}_{2}^{\prime}(t) d t
$$

$$
=\int_{-1}^{1}\left(e^{-\left(t^{2}-1\right)^{2}},\left(t^{3}-t\right) e^{-\left(t^{2}-1\right)^{2}},\left(t-t^{3}\right) e^{-\left(t^{2}-1\right)^{2}}\right) \cdot(-1,2 t,-2 t) d t
$$

$$
=\int_{-1}^{1}\left(4 t^{4}-4 t^{2}-1\right) e^{-\left(t^{2}-1\right)^{2}} d t
$$

$$
=-\left.t e^{-\left(t^{2}-1\right)^{2}}\right|_{t=-1} ^{t=1}=-1 e^{0}-\left(-(-1) e^{0}\right)=-2
$$

$$
\int_{\mathbf{c}_{3}} \mathbf{G} \cdot d s=\int_{-1}^{1} \mathbf{G}\left(\mathbf{c}_{3}(t)\right) \cdot \mathbf{c}_{3}^{\prime}(t) d t=\int_{-1}^{1}\left(e^{0}, 0,0\right) \cdot(-1,0,0) d t
$$

$$
=\int_{-1}^{1}-1 d t=-2
$$

(c) Both \mathbf{F} and \mathbf{G} are defined on all of \mathbb{R}^{2}. For a conservative vector field (with any domain of definition), the path integrals connecting any two points p and q are independent of the path (which is assumed to lie in the domain of definition of the vector field).

The calculations in part (a) show that \mathbf{F} cannot be a conservative vector field. The calculations in part (b) suggest that \mathbf{G} might be a conservative vector field, and in fact it is. We can verify this by either
(i) computing that $\operatorname{Curl}(\mathbf{G})=(0,0,0)$, and using our theorems: since the domain of definition of \mathbf{G} is simply connected, this is enough to imply that there must be a function g with $\mathbf{G}=\nabla g$. Or
(ii) finding the function g directly. In this case $g(x, y, z)=x e^{y z}$ is clearly a solution.
3. We're starting with the vector field $\mathbf{F}(x, y)=\left(\frac{y}{x^{2}+y^{2}}, \frac{-x}{x^{2}+y^{2}}\right)$.
(a) The domain of definition of \mathbf{F} is \mathbb{R}^{2} minus the origin. It is connected but not simply connected.
(b) By the " \mathbb{R}^{2} curl" of a vector field $\mathbf{F}=\left(F_{1}, F_{2}\right)$ we mean the function $\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}$. For our vector field \mathbf{F} we have

$$
\begin{aligned}
& \frac{\partial F_{2}}{\partial x}=\frac{-1}{x^{2}+y^{2}}+\frac{2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& \frac{\partial F_{1}}{\partial y}=\frac{1}{x^{2}+y^{2}}-\frac{2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

So

$$
\begin{aligned}
\operatorname{Curl}(\mathbf{F}) & =\frac{-1}{x^{2}+y^{2}}+\frac{2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}-\left(\frac{1}{x^{2}+y^{2}}-\frac{2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right) \\
& =\frac{-2}{x^{2}+y^{2}}+\frac{2 x^{2}+2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =0 .
\end{aligned}
$$

(c) The curve \mathbf{c} is the unit circle, oriented counterclockwise. We can use the usual parameterization $\mathbf{c}(t)=(\cos (t), \sin (t))$ for $t \in[0,2 \pi]$, with velocity vector $\mathbf{c}^{\prime}(t)=$ $(-\sin (t), \cos (t))$.

$$
\begin{aligned}
\int_{\mathbf{c}} \mathbf{F} \cdot d s & =\int_{0}^{2 \pi} \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}^{\prime}(t) d t \\
& =\int_{0}^{2 \pi}(\sin (t),-\cos (t)) \cdot(-\sin (t), \cos (t)) d t \\
& =\int_{0}^{2 \pi}-1 d t=-2 \pi
\end{aligned}
$$

(d) If $\mathbf{F}=\nabla f$ for some function f then for any closed curve \mathbf{c} in the domain of \mathbf{F} we would have to have

$$
\int_{\mathbf{c}} \mathbf{F} \cdot d s=0 .
$$

One way to see this is to note that if we pick any point p of \mathbf{c}, we can consider \mathbf{c} to be a curve that begins and ends at \mathbf{c}. Then, by the formula we proved in class (theorem 5.5 in the book)

$$
\int_{\mathbf{c}} \mathbf{F} \cdot d s=f(p)-f(p)=0
$$

(e) From parts (c) and (d) we see that \mathbf{F} cannot be the gradient of any function f.

The "curl test" is a local test (i.e., since it involves derivatives, it only involves very local information about the vector field \mathbf{F}) and only guarantees that locally there is a function f with $\mathbf{F}=\nabla f$. The problem of piecing these local possibilities of functions together to make a global function then depends on the topology of the domain of \mathbf{F}.

In this case since the domain of \mathbf{F} is not simply connected, there is no guarantee that these local functions can be pieced together, and in fact our vector field \mathbf{F} gives an example of a case where this patching is not possible.
4. Let f be the function $f(x, y)=x^{2} y$, then
(a) $f(1,1)-f(-1,-1)=1^{2} \cdot 1-(-1)^{2}(-1)=2$.
(b) $\mathbf{F}=\nabla f=\left(2 x y, x^{2}\right)$.

Now we look at the curves
\mathbf{c}_{1} : The half circle $(\sqrt{2} \cos (t), \sqrt{2} \sin (t)), t \in[-3 \pi / 4, \pi / 4]$.
\mathbf{c}_{2} : The half circle $(\sqrt{2} \cos (t),-\sqrt{2} \sin (t)), t \in[3 \pi / 4,7 \pi / 4]$.
\mathbf{c}_{3} : The straight line $(t, t) t \in[-1,1]$.
with velocity vectors

$$
\mathbf{c}_{1}^{\prime}(t)=(-\sqrt{2} \sin (t), \sqrt{2} \cos (t)) \quad \mathbf{c}_{2}^{\prime}(t)=(-\sqrt{2} \sin (t),-\sqrt{2} \cos (t)) \quad \mathbf{c}_{3}^{\prime}(t)=(1,1)
$$

The integrals along these curves are
(c)

$$
\begin{aligned}
\int_{\mathbf{c}_{1}} \mathbf{F} \cdot d s & =\int_{-3 \pi / 4}^{\pi / 4} \mathbf{F}\left(\mathbf{c}_{1}(t)\right) \cdot \mathbf{c}_{1}^{\prime}(t) d t \\
& =\int_{-3 \pi / 4}^{\pi / 4}\left(4 \sin (t) \cos (t), 2 \cos ^{2}(t)\right) \cdot(-\sqrt{2} \sin (t), \sqrt{2} \cos (t)) d t \\
& =\int_{-3 \pi / 4}^{\pi / 4}-4 \sqrt{2} \sin ^{2}(t) \cos (t)+2 \sqrt{2} \cos ^{3}(t) d t \\
& =\left.2 \sqrt{2} \cos ^{2}(t) \sin (t)\right|_{t=-3 \pi / 4} ^{\pi / 4}=1-(-1)=2 . \\
& =\int_{3 \pi / 4}^{7 \pi / 4}\left(-4 \cos (t) \sin (t), 2 \cos ^{2}(t)\right) \cdot(-\sqrt{2} \sin (t),-\sqrt{2} \cos (t)) \\
& =\int_{3 \pi / 4}^{7 \pi / 4} 4 \sqrt{2} \sin ^{2}(t) \cos (t)-2 \sqrt{2} \cos ^{3}(t) d t \\
& =-\left.2 \sqrt{2} \cos ^{2}(t) \sin (t)\right|_{t=3 \pi / 4} ^{7 \pi / 4}=1-(-1)=2 . \\
& =\int_{3 \pi / 4}^{7 \pi / 4} \mathbf{F}\left(\mathbf{c}_{2}(t)\right) \cdot \mathbf{c}_{2}^{\prime}(t) d t \\
& =\int_{-1}^{1} 3 t^{2} d t=\left.t^{3}\right|_{t=-1} ^{t=1}=1-(-1)^{3}=2 .
\end{aligned}
$$

(d) The answers to (b) and (c) are of course all the same. The reason is the calculation we did in class (theorem 5.5 in the book again), if $\mathbf{F}=\nabla f$ is a conservative vector field, then for any oriented curve \mathbf{c} in the domain of \mathbf{F} starting at point q and ending at point p, we have

$$
\int_{\mathbf{c}} \mathbf{F} \cdot d s=f(p)-f(q)
$$

The curves above all connect $q=(-1,-1)$ to $p=(1,1)$, which explains the calculations in part (c).

