1.

(a) Geometrically, the reason that $x y=a$ and $y=b x$ have only a single solution is that the line $y=b x$ intersects the curve $x y=a$ in only a single point in the positive quadrant:

Algebraically, we can see this by trying to solve for x and y : substituting $y=b x$ into $x y=a$ gives $x(b x)=a$ or $x=\sqrt{a / b}$ and $y=b x=\sqrt{a b}$ as the unique solutions with x and y positive.
(b) If $u=x y$ and $v=y / x$, the same steps as the algebraic solution in part (a) give $x=\sqrt{u / v}$ and $y=\sqrt{u v}$.
(c) The region is sketched below:

In terms of u, v coordinates, this region is a rectangle: $1 \leq u \leq 3,1 \leq v \leq 4$.
(c) The determinant of the derivative matrix for the change of variables is

$$
\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\left|\begin{array}{rr}
\frac{1}{2 \sqrt{u v}} & -\frac{\sqrt{u}}{2 v^{3 / 2}} \\
\frac{\sqrt{v}}{2 \sqrt{u}} & \frac{\sqrt{u}}{2 \sqrt{v}}
\end{array}\right|=\frac{1}{2 v} .
$$

(d) The function $f(x, y)=x^{3} y^{7}$ is $(\sqrt{u / v})^{3}(\sqrt{u v})^{7}=u^{5} v^{2}$ in terms of u and v.

In order to write the integral over the region R in terms of a u, v integral we have to:
(i) Work out the region R in terms of u, v coordinates.
(ii) Rewrite the function f in terms of u and v, and
(iii) Include the Jacobian factor to take the distortion in area due to the parameterization into account.

This gives us:

$$
\begin{aligned}
\iint_{R} f(x, y) d A & =\int_{1}^{3} \int_{1}^{4} u^{5} v^{2} \frac{1}{2 v} d v d u=\int_{1}^{3}\left(\frac{1}{4} u^{5} v^{2}\right)_{v=1}^{v=4} d u \\
& =\frac{15}{4} \int_{1}^{3} u^{5} d u=\left.\frac{5}{8} u^{6}\right|_{u=1} ^{u=3}=455
\end{aligned}
$$

2. This time the region R is the one contained within the curves $x y=1, x y=2$, $x^{2} y=1$, and $x^{2} y=3$, and the function is $f(x, y)=x^{2} y^{2}$.
(a) If $u=x^{2} y$ and $v=x y$ then we can solve algebraically for x and y. Substituting, we get $u=x^{2} y=x(x y)=x v$ or $x=u / v$, which then gives $y=v^{2} / u$.
(b) In terms of u and v, the region R again becomes a rectangle $1 \leq u \leq 3,1 \leq v \leq 2$.
(c) $f=x^{2} y^{2}=(u / v)^{2}\left(v^{2} / u\right)^{2}=v^{2}$ (or, $f=(x y)^{2}=v^{2}$, which is faster).
(d) The Jacobian factor is

$$
\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\left|\begin{array}{cc}
\frac{1}{v} & -\frac{u}{v^{2}} \\
-\frac{v^{2}}{u^{2}} & \frac{2 v}{u}
\end{array}\right|=\frac{1}{u} .
$$

(e) Using the change of variables theorem, the integral becomes

$$
\begin{aligned}
\iint_{R} f(x, y) d A & =\int_{1}^{3} \int_{1}^{2} v^{2} \frac{1}{u} d v d u=\left.\int_{1}^{3} \frac{v^{3}}{3 u}\right|_{v=1} ^{v=2} d u \\
& =\frac{7}{3} \int_{1}^{3} \frac{1}{u} d u=\frac{7}{3} \ln (3)
\end{aligned}
$$

3.

(a) The region of integration is the region below the paraboloid $z=8-x^{2}-y^{2}$ and above $z=-3$, restricted to the cylinder $x^{2}+y^{2} \leq 8$.

$$
\begin{aligned}
& \int_{-\sqrt{8}}^{\sqrt{8}} \int_{-\sqrt{8-x^{2}}}^{\sqrt{8-x^{2}}} \int_{-3}^{8-x^{2}-y^{2}} 2 d z d y d x=2 \int_{-\sqrt{8}}^{\sqrt{8}} \int_{-\sqrt{8-x^{2}}}^{\sqrt{8-x^{2}}}\left(11-x^{2}-y^{2}\right) d y d x \\
= & 2 \int_{-\sqrt{8}}^{\sqrt{8}}\left(11 y-x^{2} y-\frac{y^{3}}{3}\right)_{y=-\sqrt{8-x^{2}}}^{y=\sqrt{8-x^{2}}} d x=\frac{4}{3} \int_{x=-\sqrt{8}}^{x=\sqrt{8}}\left(25-2 x^{2}\right) \sqrt{8-x^{2}} d x \\
= & \left(14 x\left(8-x^{2}\right)^{1 / 2}+\frac{2}{3} x\left(8-x^{2}\right)^{3 / 2}+112 \arcsin \left(\frac{x}{\sqrt{8}}\right)\right)_{x=-\sqrt{8}}^{x=\sqrt{8}}=112 \pi .
\end{aligned}
$$

(b) The region of integration is the part of the unit ball in the positive octant.

The first step is easy:
$\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}}(2 x-y) d z d x d y=\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}}(2 x-y) \sqrt{1-x^{2}-y^{2}} d x d y$

But this integral is somewhat awkward to work out. It might be better to split it into two parts:

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} 2 x \sqrt{1-x^{2}-y^{2}} d x d y=\frac{2}{3} \int_{0}^{1}-\left.\left(1-x^{2}-y^{2}\right)^{3 / 2}\right|_{x=0} ^{x=\sqrt{1-y^{2}}} d y \\
& =\frac{2}{3} \int_{0}^{1}\left(1-y^{2}\right)^{3 / 2} d y=\frac{1}{12}\left(\left(5 y-2 y^{3}\right) \sqrt{1-y^{2}}+3 \arcsin (y)\right)_{y=0}^{y=1}=\frac{\pi}{8}
\end{aligned}
$$

To deal with the second half, we can switch the order of integration:

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}}-y \sqrt{1-x^{2}-y^{2}} d x d y=\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}}-y \sqrt{1-x^{2}-y^{2}} d y d x
$$

Which we recognize as the same integral (with the roles of x and y reversed) as we did in the first part, up to a factor of $-\frac{1}{2}$.

This means that we must have

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}}-y \sqrt{1-x^{2}-y^{2}} d y d x=-\frac{1}{2}\left(\frac{\pi}{8}\right)=-\frac{\pi}{16}
$$

So that

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}}(2 x-y) \sqrt{1-x^{2}-y^{2}} d x d y=\frac{\pi}{8}-\frac{\pi}{16}=\frac{\pi}{16}
$$

4. The region V of integration is a tetrahedron with vertices $(0,0,0),(1,1,0),(0,1,0)$, and $(1,1,1)$. Here are three views of the region:

The shadows of V on the $x y, y z$ and $x z$ planes are shown below:

The six possible orders of integration are then
(a) $\int_{0}^{1} \int_{0}^{y} \int_{0}^{x} x^{2} y z d z d x d y$
(b) $\int_{0}^{1} \int_{x}^{1} \int_{0}^{x} x^{2} y z d z d y d x$
(c) $\int_{0}^{1} \int_{0}^{y} \int_{z}^{y} x^{2} y z d x d z d y$
(d) $\int_{0}^{1} \int_{z}^{1} \int_{z}^{y} x^{2} y z d x d y d z$
(e) $\int_{0}^{1} \int_{0}^{x} \int_{x}^{1} x^{2} y z d y d z d x$
(f) $\int_{0}^{1} \int_{z}^{1} \int_{x}^{1} x^{2} y z d y d x d z$
5.
(a) The function is positive over the circle $x^{2}+y^{2} \leq 9$.

One possible parameterization is to parameterize the circle using polar coordinates, and then use the equation of the graph to get the z coordinate. This parameterization is

$$
\begin{aligned}
& x(r, \theta)=r \cos (\theta) \quad \mathbf{T}_{r}=(\cos (\theta), \sin (\theta),-2 r) \\
& y(r, \theta)=r \sin (\theta) \quad \text { with } \quad \mathbf{T}_{\theta}=(-r \sin (\theta), r \cos (\theta), 0) \\
& z(r, \theta)=9-r^{2} \quad \mathbf{N}=\mathbf{T}_{r} \times \mathbf{T}_{\theta}=\left(2 r^{2} \cos (\theta), 2 r^{2} \sin (\theta), r\right)
\end{aligned}
$$

where $0 \leq r \leq 3,0 \leq \theta \leq 2 \pi$.
We can also use the general form for the graph of a function:

$$
\begin{aligned}
& x(u, v)=u \\
& y(u, v)=v \\
& z(u, v)=f(u, v)
\end{aligned} \quad \text { with } \quad \begin{aligned}
& \mathbf{T}_{u}=\left(1,0, f_{u}\right) \\
& \mathbf{T}_{v}=\left(0,1, f_{v}\right) \\
& \mathbf{N}=\mathbf{T}_{u} \times \mathbf{T}_{v}=\left(-f_{u},-f_{v}, 1\right)
\end{aligned}
$$

For $f(x, y)=9-x^{2}-y^{2}$ this gives the normal vector $\mathbf{N}=(2 u, 2 v, 1)$, with (u, v) in the circle $u^{2}+v^{2} \leq 9$.
(b) The parameterizations of the piece of the paraboloid in the first octant are similiar.

Using polar coordinates:

$$
\begin{aligned}
x(r, \theta) & =r \cos (\theta) \\
y(r, \theta) & =r \sin (\theta) \\
z(r, \theta) & =r^{2}
\end{aligned} \quad \text { with } \quad \begin{aligned}
\mathbf{T}_{r} & =(\cos (\theta), \sin (\theta), 2 r) \\
\mathbf{T}_{\theta} & =(-r \sin (\theta), r \cos (\theta), 0) \\
\mathbf{N} & =\mathbf{T}_{r} \times \mathbf{T}_{\theta}=\left(-2 r^{2} \cos (\theta),-2 r^{2} \sin (\theta), r\right)
\end{aligned}
$$

with $0 \leq r \leq \infty, 0 \leq \theta \leq \pi / 2$.
Or, using the general form for the graph of a function above, we could use $x(u, v)=$ $u, y(u, v)=v$, and $z(u, v)=f(u, v)=u^{2}+v^{2}$. By the formulas from part (a), this gives

$$
\mathbf{T}_{u}=(1,0,2 u), \mathbf{T}_{v}=(0,1,2 v), \text { and } \mathbf{N}=(-2 u,-2 v, 1)
$$

(c) This one is a little trickier to parameterize. The surface is a torus (i.e., a doughnut).

We can parameterize the center circle of the torus by $c(\theta)=(3 \cos (\theta), 3 \sin (\theta), 0)$.
In the slice of the torus around that point, we can draw two vectors which generate the circle (a "moving frame" around the center point c), $a(\theta)=(0,0,1)$ and $b(\theta)=(\cos (\theta), \sin (\theta), 0)$.

Now for any angle α, the linear combination $a(\theta) \cos (\alpha)+b(\theta) \sin (\alpha)$, when added to the center point $c(\theta)$ will give us a point on the circle around the center point $c(\theta)$. Putting this together, we can parameterize the torus by

$$
\begin{aligned}
& x(\theta, \alpha)=3 \cos (\theta)+\cos (\theta) \cos (\alpha)=(3+\cos (\alpha)) \cos (\theta) \\
& y(\theta, \alpha)=3 \sin (\theta)+\sin (\theta) \cos (\alpha)=(3+\cos (\alpha)) \sin (\theta) \\
& z(\theta, \alpha)=\sin (\alpha)
\end{aligned}
$$

Giving

$$
\begin{aligned}
\mathbf{T}_{\theta} & =(-(3+\cos (\alpha)) \sin (\theta),(3+\cos (\alpha)) \cos (\theta), 0) \\
\mathbf{T}_{\alpha} & =(-\sin (\alpha) \cos (\theta),-\sin (\alpha) \sin (\theta), \cos (\alpha))
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{N} & =\mathbf{T}_{\theta} \times \mathbf{T}_{\alpha} \\
& =((3+\cos (\alpha)) \cos (\alpha) \cos (\theta),(3+\cos (\alpha)) \cos (\alpha) \sin (\theta),(3+\cos (\alpha)) \sin (\alpha))
\end{aligned}
$$

