
Math 280 Answers for Homework 9

1.

(a) Geometrically, the reason that xy = a and y = bx have only a single solution
is that the line y = bx intersects the curve xy = a in only a single point in the
positive quadrant:

y = bx

xy = a

Algebraically, we can see this by trying to solve for x and y: substituting y = bx
into xy = a gives x(bx) = a or x =

√

a/b and y = bx =
√

ab as the unique
solutions with x and y positive.

(b) If u = xy and v = y/x, the same steps as the algebraic solution in part (a) give
x =

√

u/v and y =
√

uv.

(c) The region is sketched below:

y = x

y = 4x

xy = 1

xy = 3

R

In terms of u, v coordinates, this region is a rectangle: 1 ≤ u ≤ 3, 1 ≤ v ≤ 4.

(c) The determinant of the derivative matrix for the change of variables is
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(d) The function f(x, y) = x3y7 is (
√

u/v)3(
√

uv)7 = u5v2 in terms of u and v.

In order to write the integral over the region R in terms of a u, v integral we have
to:

(i) Work out the region R in terms of u, v coordinates.

(ii) Rewrite the function f in terms of u and v, and

(iii) Include the Jacobian factor to take the distortion in area due to the param-
eterization into account.

This gives us:

∫∫

R

f(x, y) dA =

∫

3

1

∫

4

1

u5v2
1

2v
dv du =

∫

3

1

(

1

4
u5v2

)v=4

v=1

du

=
15

4

∫

3

1

u5 du =
5

8
u6

∣

∣

∣

∣

u=3

u=1

= 455.

2. This time the region R is the one contained within the curves xy = 1, xy = 2,
x2y = 1, and x2y = 3, and the function is f(x, y) = x2y2.

(a) If u = x2y and v = xy then we can solve algebraically for x and y. Substituting,
we get u = x2y = x(xy) = xv or x = u/v, which then gives y = v2/u.

(b) In terms of u and v, the region R again becomes a rectangle 1 ≤ u ≤ 3, 1 ≤ v ≤ 2.

(c) f = x2y2 = (u/v)2(v2/u)2 = v2 (or, f = (xy)2 = v2, which is faster).

(d) The Jacobian factor is
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(e) Using the change of variables theorem, the integral becomes

∫∫

R

f(x, y) dA =

∫
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3.

(a) The region of integration is the region below the paraboloid z = 8 − x2 − y2 and
above z = −3, restricted to the cylinder x2 + y2 ≤ 8.

∫

√
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√
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∫

√
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√
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√
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√
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√
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√
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3
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√
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√
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√
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√
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√
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=
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(b) The region of integration is the part of the unit ball in the positive octant.

The first step is easy:

∫
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But this integral is somewhat awkward to work out. It might be better to split it
into two parts:
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√
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)y=1

y=0

=
π

8
.

To deal with the second half, we can switch the order of integration:

∫

1

0

∫
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0
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√
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Which we recognize as the same integral (with the roles of x and y reversed) as
we did in the first part, up to a factor of − 1

2
.

This means that we must have

∫
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√
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So that
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.

4. The region V of integration is a tetrahedron with vertices (0, 0, 0), (1, 1, 0), (0, 1, 0),
and (1, 1, 1). Here are three views of the region:
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The shadows of V on the xy, yz and xz planes are shown below:
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The six possible orders of integration are then
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5.

(a) The function is positive over the circle x2 + y2 ≤ 9.

One possible parameterization is to parameterize the circle using polar coordi-
nates, and then use the equation of the graph to get the z coordinate. This
parameterization is

x(r, θ) = r cos(θ)

y(r, θ) = r sin(θ)

z(r, θ) = 9 − r2

with

Tr = (cos(θ), sin(θ),−2r)

Tθ = (−r sin(θ), r cos(θ), 0)

N = Tr × Tθ = (2r2 cos(θ), 2r2 sin(θ), r)

where 0 ≤ r ≤ 3, 0 ≤ θ ≤ 2π.

We can also use the general form for the graph of a function:

x(u, v) = u

y(u, v) = v

z(u, v) = f(u, v)

with
Tu = (1, 0, fu)

Tv = (0, 1, fv)

N = Tu × Tv = (−fu,−fv, 1)

For f(x, y) = 9 − x2 − y2 this gives the normal vector N = (2u, 2v, 1), with (u, v)
in the circle u2 + v2 ≤ 9.

(b) The parameterizations of the piece of the paraboloid in the first octant are similiar.

Using polar coordinates:

x(r, θ) = r cos(θ)

y(r, θ) = r sin(θ)

z(r, θ) = r2

with

Tr = (cos(θ), sin(θ), 2r)

Tθ = (−r sin(θ), r cos(θ), 0)

N = Tr × Tθ = (−2r2 cos(θ),−2r2 sin(θ), r)

with 0 ≤ r ≤ ∞, 0 ≤ θ ≤ π/2.

Or, using the general form for the graph of a function above, we could use x(u, v) =
u, y(u, v) = v, and z(u, v) = f(u, v) = u2 + v2. By the formulas from part (a),
this gives

Tu = (1, 0, 2u), Tv = (0, 1, 2v), and N = (−2u,−2v, 1).
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(c) This one is a little trickier to parameterize. The surface is a torus (i.e., a doughnut).

a

b

x

y

z

We can parameterize the center circle of the torus by c(θ) = (3 cos(θ), 3 sin(θ), 0).

In the slice of the torus around that point, we can draw two vectors which generate
the circle (a “moving frame” around the center point c), a(θ) = (0, 0, 1) and
b(θ) = (cos(θ), sin(θ), 0).

Now for any angle α, the linear combination a(θ) cos(α)+ b(θ) sin(α), when added
to the center point c(θ) will give us a point on the circle around the center point
c(θ). Putting this together, we can parameterize the torus by

x(θ, α) = 3 cos(θ) + cos(θ) cos(α) = (3 + cos(α)) cos(θ)

y(θ, α) = 3 sin(θ) + sin(θ) cos(α) = (3 + cos(α)) sin(θ)

z(θ, α) = sin(α)

Giving

Tθ =
(

−(3 + cos(α)) sin(θ), (3 + cos(α)) cos(θ), 0
)

Tα =
(

− sin(α) cos(θ), − sin(α) sin(θ), cos(α)
)

and

N = Tθ × Tα

=
(

(3 + cos(α)) cos(α) cos(θ), (3 + cos(α)) cos(α) sin(θ), (3 + cos(α)) sin(α)
)

.
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