Curves

October 6, 2004

Curves are the images of (at least piecewise) continuous $\mathbb{R} \rightarrow \mathbb{R}^{n}$ functions (the functions themselves are referred to as paths). Different paths can produce the same curve: e.g. $\mathbf{x}_{1}(t)=\left(t, t^{2}\right)$ and $\mathbf{x}_{2}(t)=\left(t^{3}, t^{6}\right)$. Most of the time, we will analyize differentiable curves. Coordinatewise differentiable functions imply differentiable curves, but the converse is not true.

Excercise 0: Find a pair of non-differentiable functions $f(t)$ and $g(t)$ so that $\mathbf{x}(t)=(f(t), g(t))$ yields a differentiable curve.

Often, the physical analogy for the path is location (in space) as a function of time. Hence, the derivative of the path $\mathbf{v}(t)=\frac{\partial \mathbf{x}}{\partial t}$ is often referred as velocity. The tangent of some curve C at some point \mathbf{x} is a straight line (a curve itself!) L also containing \mathbf{x}, so that for $\mathbf{y} \in C$ and $\mathbf{z} \in L$:

$$
\lim _{|\mathbf{y}-\mathbf{x}| \rightarrow 0} \frac{\mathbf{y}-\mathbf{x}}{|\mathbf{y}-\mathbf{x}|}=\lim _{|\mathbf{z}-\mathbf{x}| \rightarrow 0} \frac{\mathbf{z}-\mathbf{x}}{|\mathbf{z}-\mathbf{x}|}
$$

If C is defined as a function of t so that is coordinatewise differentiable and $\mathbf{x}=C\left(t_{0}\right)$ for some t_{0} and $\mathbf{v}\left(t_{0}\right) \neq \underline{0}$, then $L(t)=\mathbf{x}+t \mathbf{v}\left(t_{0}\right)$ defines a tangent.

Excercise 1: Prove the above statement.
Problem 1: What if that's not the case? Find the tangent of the curve induced by $\mathbf{x}(t)=\left(t^{5}, t^{3}\right)$ in the origin.
Often, however, curves are not defined as functions. Finding such a description is called parametrization of the curve.
Problem 2: A curve C is defined as follows:

$$
\mathbf{x}=(x, y) \in C:(x, y)\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\binom{x}{y}=1
$$

Parametrize this curve. That is find $\mathbf{x}(t)=(x(t), y(t))$ such that $\forall t \in \mathbb{R}: \mathbf{x}(t) \in C$ and $\forall(\mathbf{x} \in C) \exists t: \mathbf{x}(t) \in C$.
Problem 3: Find a tangent of C going through the point $\mathbf{y}=(3,3)$.

