Change of Coordinates and the Jacobian

November 11, 2004

1. IT IS NOT THE CASE THAT $d x d y=d r d \theta$. IT IS THE CASE THAT $d x d y=r d r d \theta$. ONE DOES NOT SIMPLY REPLACE INFINITESIMALS.
2. We change variables in integration to: i) simplify the region of the integration ii) simplify the integrand, or iii) both.
(a) Simplify the region.
i. What is the area of an ellipse?

$$
\begin{aligned}
A & =\iint_{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1} d x d y \\
& =\iint_{u^{2}+v^{2}=1}\left\|\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right\| d u d v \\
& =a b \iint_{u^{2}+v^{2}=1}^{2 \pi} d u d v \\
& =a b \int_{r=0}^{1} \int_{\theta=0}^{2 \pi}\left\|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right\| d r d \theta \\
& =a b \int_{r=0}^{1} \int_{\theta=0}^{2 \pi} r d r d \theta \\
& =\frac{a b}{2} \int_{0}^{2 \pi} d \theta \\
& =\pi a b
\end{aligned}
$$

ii. Evaluate $\iint_{P} 2 x^{2}+x y-y^{2} d x d y$ where $P=\{(x, y) \mid 1 \leq 2 x-y \leq$ $3,-2 \leq x+y \leq 0\}$. Use $u=2 x-y$ and $v=x+y . P=T(R)$ where R is the rectangle $[1,3] \times[-2,0]$ in the $u v$ plane.
Observe that $2 x^{2}+x y-y^{2}=(2 x+y)(x+y)=u v$ and $\frac{\partial(x, y)}{\partial(u, v)}=$
$\left\|\begin{array}{cc}\frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3}\end{array}\right\|=\frac{1}{3}$

$$
\iint_{P} 2 x^{2}+x y-y^{2} d x d y=\frac{1}{3} \int_{u=1}^{3} \int_{v=-2}^{0} u v d u d v
$$

$$
\begin{aligned}
& =\frac{1}{3} \int_{v=-2}^{0} \frac{1}{2}(9-1) v d v \\
& =-\frac{8}{3}
\end{aligned}
$$

(b) Simplify the integrand. Evaluate the integral $\iint_{R} e^{\frac{x+y}{x-y}} d x d y$ where P is the trapazoid with vertices $(1,0),(2,0),(0,-2),(0,-1)$.
Use the transformation $u=x+y$ and $v=x-y$. So $x=\frac{1}{2}(u+v)$ and $y=\frac{1}{2}(u-v)$. How does the trapazoid transform? From the vertices of the trapazoid we get the four bounding lines: $y=0, x=0, x-y=$ $2, x-y=1$. We apply our transformation for x and y in terms of u and v to get the transformed lines: $u=v, u=-v, v=2, v=1$. The region becomes $T(P)=\{(u, v) \mid 1 \leq v \leq 2,-v \leq u \leq v\} . \frac{\partial(x, y)}{\partial(u, v)}=\frac{1}{2}$. So:

$$
\begin{aligned}
\iint_{R} e^{\frac{x+y}{x-y}} d x d y & =\frac{1}{2} \int_{v=1}^{2} \int_{u=-v}^{v} e^{\frac{u}{v}} d u d v \\
& =\frac{1}{2} \int_{1}^{2}\left(e-e^{-1}\right) v d v \\
& =\frac{3}{4}\left(e-e^{-1}\right)
\end{aligned}
$$

Remember in changing from the $x y$ plane to the $u v$ plane all x 's and y 's must disappear. Change:
(a) integrand
(b) infinitesimals (remember Jacobian!)
(c) limits of integration
3. A very quick note on geometry. Feel free to ignore. Where does the Jacobian, a determinant, come from? Remember that the magnitude of a cross product is a measure of the area of the parallelogram spanned
by two vectors. The cross product can also be evaluated in terms of a formula involving the determinant. The two vectors we use are $\mathbf{T}_{u}=$ $\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, 0\right)$ and $\mathbf{T}_{v}=\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, 0\right)$. These are the tangent vectors of the coordinate lines of x and y in terms of u and v. All this is related to area because an infinitesimal rectangle in the $u v$ plane becomes an infinitesimal parallelogram in the $x y$ plane where the areas are related by:

$$
\left\|\Delta u \mathbf{T}_{u} \times \Delta v \mathbf{T}_{v}\right\|=\left\|\mathbf{T}_{u} \times \mathbf{T}_{v}\right\| \Delta u \Delta v
$$

