1. Compute the integral $\iint_{S} f d S$ for the function $f(x, y, z)=x y$ and the surface $S$ which is the graph of $z=x^{2}+y^{2}$ inside the rectangle $0 \leq x \leq 3,0 \leq y \leq 2$.
2. Find the surface area of the portion of the sphere of radius $r$ which is described by $\phi_{1} \leq \phi \leq \phi_{2}$. (Here $\phi$ is the angle with the $z$-axis, as in the usual spherical coordinates).
3. Find the integral $\iint_{S} \mathbf{F} \cdot d S$ where $S$ is the helicoid parameterized by $(u \cos (v), u \sin (v), v)$, $0 \leq u \leq 1,0 \leq v \leq 4 \pi$ with positive orientation upwards, and $\mathbf{F}$ is the vector field $\mathbf{F}(x, y, z)=(y,-x, x z)$.
4. Find the flux integral of $\mathbf{F}(x, y, z)=\left(z, x, y^{2}\right)$ through the top half of the unit sphere, with outward orientation.
5. Compute the flux integral of

$$
\mathbf{F}(x, y, z)=\left(\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right)
$$

through the sphere of radius $r$, oriented outwards.
Compute the divergence $\operatorname{Div}(\mathbf{F})$ of $\mathbf{F}$. Don't these two answers contradict the divergence theorem? Can you resolve this conflict?

