1. Compute the integral $\iint_S f \, dS$ for the function f(x, y, z) = xy and the surface S which is the graph of $z = x^2 + y^2$ inside the rectangle $0 \le x \le 3, 0 \le y \le 2$.

2. Find the surface area of the portion of the sphere of radius r which is described by $\phi_1 \leq \phi \leq \phi_2$. (Here ϕ is the angle with the z-axis, as in the usual spherical coordinates).

3. Find the integral $\iint_S \mathbf{F} \cdot dS$ where S is the helicoid parameterized by $(u \cos(v), u \sin(v), v)$, $0 \le u \le 1, 0 \le v \le 4\pi$ with positive orientation upwards, and \mathbf{F} is the vector field $\mathbf{F}(x, y, z) = (y, -x, xz)$.

4. Find the flux integral of $\mathbf{F}(x, y, z) = (z, x, y^2)$ through the top half of the unit sphere, with outward orientation.

5. Compute the flux integral of

$$\mathbf{F}(x,y,z) = \left(\frac{x}{(x^2+y^2+z^2)^{3/2}}, \frac{y}{(x^2+y^2+z^2)^{3/2}}, \frac{z}{(x^2+y^2+z^2)^{3/2}}\right)$$

through the sphere of radius r, oriented outwards.

Compute the divergence $Div(\mathbf{F})$ of \mathbf{F} . Don't these two answers contradict the divergence theorem? Can you resolve this conflict?