1. If \mathbf{c} is the top half of the unit circle, oriented from $(-1,0)$ to $(1,0)$, and \mathbf{F} is the vector field

$$
\mathbf{F}(x, y)=\left(\ln (x+5)+y^{2}, 2 x y-y^{2}\right),
$$

check that $\operatorname{Curl}(\mathbf{F})=0$ (the \mathbb{R}^{2} curl), and use the flexibility theorem for curves to compute the integral $\int_{\mathbf{c}} \mathbf{F} \cdot d s$. Flexing the curve to the line joining ($-1,0$) and (1,0) is a possibility.
2. If \mathbf{F} is the vector field

$$
\mathbf{F}(x, y, z)=\left(y e^{z^{2}}-x e^{x y}, y e^{x y}+\tan \left(z^{2}+z+1\right), x^{2}\right),
$$

check that $\operatorname{Div}(\mathbf{F})=0$, and use the flexibility theorem for surfaces to compute $\iint_{S} \mathbf{F} \cdot d S$ where S is the top half of the unit sphere oriented outwards. ("flexing" it to the unit disk seems like a good bet).
3. If \mathbf{c}_{1} is the top half of the unit circle, oriented from $(-1,0)$ to $(1,0)$, and \mathbf{c}_{2} is the line segment joining $(-1,0)$ to $(1,0)$, and \mathbf{F} is the vector field

$$
\mathbf{F}(x, y)=\left(x^{2}-y, x y-\arcsin (y)+e^{y^{3}}\right),
$$

use Green's theorem to compute the difference between $\int_{\mathbf{c}_{1}} \mathbf{F} \cdot d s$ and $\int_{\mathbf{c}_{2}} \mathbf{F} \cdot d s$.
Use this to compute $\int_{\mathbf{c}_{1}} \mathbf{F} \cdot d s$ (by computing the easier $\int_{\mathbf{c}_{2}} \mathbf{F} \cdot d s$, of course...).
4. Could $\mathbf{E}(x, y, z)=\left(x^{2}-y^{2}, e^{y}-2 z, z^{2}+3 \sin (y)\right)$ be an electric field (in a static situation)?
Could $\mathbf{B}(x, y, z)=\left(\sin (x), \sin (y), z^{2}\right)$ be a magnetic field (in a static situation)?

