1. Sketch the region $U=\{(x, y)| | y \mid \leq \sin (x)\}$, and describe the interior points and the boundary points.
2. Let $u(x, y, t)=e^{-2 t} \sin (3 x) \cos (2 y)$ denote the vertical displacement of a vibrating membrane from the point (x, y) in the $x y$-plane at time t. Compute $u_{x}(x, y, t), u_{y}(x, y, t)$, and $u_{t}(x, y, t)$ and give physical interpretations of these results.
3. If $\mathbf{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is the function

$$
\mathbf{F}(x, y)=\left(\sin (\pi x) \cos (\pi y), y e^{x y}, x^{2}+y^{3}\right)
$$

compute the derivative matrix $\mathbf{D F}$ at $(1,2)$. If (at $(1,2))$ we go in the direction $\vec{v}=$ $(3,-2)$, what are the instantaneous rates of change of the functions $\sin (\pi x) \cos (\pi y)$, $y e^{x y}$, and $x^{2}+y^{3}$?
4. I'd like to know if the function

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{y^{2} x}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

is differentiable at $(0,0)$. I already know that it's continuous at $(0,0)-I$ remember that from class.
(a) If we restrict the function $f(x, y)$ to the x-axis, points of the form $(x, 0)$, what does the function look like? Is $f_{x}(0,0)$ defined? If so, what does it equal?
(b) Similarly, if we restrict the function $f(x, y)$ to the y-axis, points of the form $(0, y)$, what does the function look like? Is $f_{y}(0,0)$ defined? If so, what does it equal?
(c) If f were differentiable at $(0,0)$, what would its derivative matrix $\mathbf{D} f$ at $(0,0)$ have to be?
(d) Using that matrix, what would be the instantaneous rate of change of f at $(0,0)$ going in the direction $\vec{v}=(1,1)$?
(e) If we restrict the function to the line $y=x$, points of the form (t, t), what does the function look like? How fast is this function changing when $t=0$?
(f) If f were differentiable, explain how the answers to parts (d) and (e) should be related.
(g) Is f differentiable at $(0,0)$?
5. Consider the function $f(x, y)=25-x^{2}-2 y^{2}$.
(a) Compute $f(2,3), f_{x}(2,3)$ and $f_{y}(2,3)$.

The equation of a plane in \mathbb{R}^{3} is $z=m x+n y+c$, which we could also consider to be the graph of the function $g(x, y)=m x+n y+c$.
(b) Compute $g_{x}(2,3)$ and $g_{y}(2,3)$.

If we want the plane $z=m x+n y+c$ to approximate the graph of $z=f(x, y)$ above $(2,3)$ as closely as possible, clearly we'd want:
(i) The plane to pass through the same point as the graph of $f(x, y)$ over $(2,3)$.
(ii) The plane to have the same instantaneous change in the x-direction as the graph at $(2,3)$.
(iii) The plane to have the same instantaneous change in the y-direction as the graph at $(2,3)$.

So,
(c) Find values of m, n, and c so that all these three things are true.

Suppose we pick numbers v_{x} and v_{y} and make the vector $\vec{v}=\left(v_{x}, v_{y}\right)$. The line

$$
\left(2+t v_{x}, 3+t v_{y}\right)
$$

is a line which passes through $(2,3)$ when $t=0$, and heads off in the direction \vec{v}.
(d) Compute the function $g\left(2+t v_{x}, 3+t v_{y}\right)$ of t, and find its derivative when $t=0$. (Use the values of m, n, and c from part (c).)
(e) Compute the function $f\left(2+t v_{x}, 3+t v_{y}\right)$ of t, and find its derivative when $t=0$.
(f) Do the answers to (d) and (e) explain what it means for f to be differentiable at $(2,3)$? Is f differentiable at $(2,3)$?
(g) Knowing what it means (from above) for a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ to be differentiable, How would you explain intuitively what it means for a function $\mathbf{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ to be differentiable? (Suggestion: We can write \mathbf{F} in terms of its three component functions: $\mathbf{F}(x, y)=\left(F_{1}(x, y), F_{2}(x, y), F_{3}(x, y)\right)$. Maybe differentiablity can be understood in terms of the component functions individually.)
(h) (Mini-bonus question) Can you explain why the derivative DF of a function $\mathbf{F}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ at a point $\left(x_{1}, \ldots, x_{n}\right)$ should be an $(m \times n)$ matrix?

