1. Let $\mathbf{F}(x, y): \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ be the function $\mathbf{F}(x, y)=\left(e^{x^{2}}, y \sin (\pi x), x y\right)$, and $\mathbf{G}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ be the function $\mathbf{G}(u, v, w)=\left(\cos (u v), w-u^{2}\right)$.
(a) Compute $\mathbf{F}(1,1)$, and let q be this point in \mathbb{R}^{3}.
(b) Write out the composite function $\mathbf{G} \circ \mathbf{F}$, and compute directly $\mathbf{D}(\mathbf{G} \circ \mathbf{F})(1,1)$.
(c) Compute $\mathbf{D F}(1,1)$ and $\mathbf{D G}(q)$.
(d) Compute the product $\mathbf{D G}(q) \mathbf{D F}(1,1)$ and verify the chain rule in this case.
2. In a suitable coordinate system, the position of a satellite over top latitude α, longitude θ, and at a distance ρ from the center of the earth is given by

$$
\begin{aligned}
x & =\rho \sin (\alpha) \cos (\theta), \\
y & =\rho \sin (\alpha) \sin (\theta), \text { and } \\
z & =\rho \cos (\alpha) .
\end{aligned}
$$

There is a function f that we're interested in. At the point q in space described by $\rho=2, \alpha=\pi / 4$, and $\theta=\pi / 3$ we know that

$$
\begin{aligned}
\frac{\partial f}{\partial x}(q) & =\sqrt{3} \\
\frac{\partial f}{\partial y}(q) & =\sqrt{12}, \text { and } \\
\frac{\partial f}{\partial z}(q) & =-1
\end{aligned}
$$

(a) Compute $\frac{\partial f}{\partial \rho}(q), \frac{\partial f}{\partial \alpha}(q)$, and $\frac{\partial f}{\partial \theta}(q)$.
(b) From this point, we wish to move in a direction so that f doesn't change. We also don't want to change ρ (it's more difficult to go up and down in orbit). With this in mind, what direction should we head in so that the instantaneous rate of change of f is zero?
3. A differential equation of the form $u_{t}=c u_{x x}$ where u is a function $u(x, t)$ of x and t, and c is a constant, is called a diffusion equation.
(a) Show that $u(x, t)=e^{a x+b t}$ (for a and b constants) satisfies the diffusion equation with $c=b / a^{2}$.
(b) Show that $u(x, t)=t^{-1 / 2} e^{-x^{2} / t}$ satisfies the diffusion equation with $c=1 / 4$.
(c) Explain why there is no C^{2} function $f(x, y)$ with $f_{x}(x, y)=e^{x}+x y$ and $f_{y}(x, y)=$ $e^{x}+x y$. (This question has nothing to do with parts (a) and (b)).
4. Describe the curve which is the intersection of $x+z=1$ and $x^{2}+y^{2}=1$. Find a parameterization of this curve.
5.
(a) Describe and sketch the graph $z=\frac{1}{x^{2}+y^{2}}$.
(b) Show that the parameterization $(x(t), y(t), z(t))=\left(e^{t} \cos (t), e^{t} \sin (t), e^{-2 t}\right)$. lies on the graph from part (a).
(c) Describe what this curve does, and sketch it on the graph from part (a).

